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Solving Large Chains

e The composition of submodels in interaction allows modeling of large
and complex systems.

IR el

e A tensor representation of MC, cither in discrete-time or

continuous-time [30, 43):
Py @M

e Associated to several High Level Formalisms (Stochastic Process
Algebra, Stochastic Automata Networks, Superposition of Stochastic
Petri Nets, cle..).

e An cfficient storage of large chains.
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[ Motivation E

e Solving very large Markov chains.

e Solving a set of chains (worst case analysis).

e Qualitative properties of models based on Markov chains.
e Proof of algorithms bascd on Markov chains.

2 /
PRISM ANR Projects Blanc SMS and Sctln Surcpaths, Checkbound [2/88]
e But numecrical analysis of chains in steady-state is still difficult [43].

e Compule performance indices 12 defined as reward functions on the
steady-state distribution:

R = r(i)mw (7).
i

e In general the tensor representation is less efficient than the usual

sparsc malrix form for basic operations required for numerical analysis.
2
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| Bounding the Rewards E

o Exact values of the performance indices are sometimes not necessary.

e Tt is often sufficient to satisly the Quality of Service (QoS)

requirements.

e Bounding some reward functions is sufficient.

\.
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Methodology

¢ We have to model a problem using a very large Markov chain and
compute its stcady-state distribution.
e Design algorithmically a new chain (Lransition matrix) such that:

— The reward functions will be upper or lower bounds of the exact

reward functions.

— The new matrix is simpler to solve (smaller or with an casy

structure).

e Based on stochastic ordering and monotounicity of Markov chains,

the derivation of structured DTMC.

\.

lumpability or censoring for building smaller chains) and patterus for
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Markov Decision Process (Van Dijk [19]).
Stochastic Bounds (bounds of the sample-paths, coupling) (Stoyan
[4, 13], Kijima [32], Shaked, Shantikumar[412]).

Here : stochastic comparison and stochastic monotonicity based on
lincar algecbra, not on sample-path theorem or coupling (stochastic

arguients).

PRUSM
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Motivation again: worst case analysis

Models where some parameters arc not perfectly known.
For instance: transition probabilitics arc in some interval.

Solving the worst case in the set of DTMC (i.e. the worst average

reward ).
How to find the ”worst” matrix in a set 7

For steady-state and transient rewards, and absorption time or

probabilitics.

Based on stochastic orderings for random variables and Markov chains,
monotonicity of DTMC.

J
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| Motivation continued: Qualitative Properties E

e Prove that a steady-state or transient reward or an absorbing time is

increasing with a parameter or the DTMC.
e Prove the convergence of algorithms based on a Markov chain.

e Bascd on the monotonicity of the DTMC.

.
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Comparison of Random Variables

e The strong stochastic ordering is defined by the set of non-decreasing
functions (Stoyan [14]).

e Definition 1 Let X and Y be random variables taking values on a
totally ordered space. Then X <g Y if and only if E[f(X)] < E[f(Y)]

for all non decreasing functions f whenever the expectations exist.

-
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Classical techniques: Strong Stochastic Bounds

e Total ordering of the states.

Qi whmehiactlo mrdaritig of +ha obain
SLrong stOCnastic Oraeriig o1 the Clialil.

e Steady-state analysis.

e Restriction (here) : Discrete Time Markov Chains (DTMC) with
finite state space I7 = {1....,n} (n is the size of the chain) and

total order on the state space.
e Continuous-Time MC : will be studied after uniformization

o [’ will refer to row i of I’
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Diserete states

FExample
(0.1,0.3,0.2,0.1,0.3) <. (0,0.4,0,0.3,0.3)
because
0.3 < 0.3
0.1 103 < 03103
0.2 101103 < 0103103
03102101103 < 0410103103
011034102101 103 < 0104104103103
-
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l Example E

e x (0.1,0.3,0.2,0.1,0.3) and y

st-comparable because:

{(0,0.5,0,0.2,0.3) are not

e (0.1 1 0.3<0.210.3; thus y <4 x is not {ruc.

e 02101 103>010.210.3;thus x <4 ¥y is not true.

.
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e Monotonicity [31] and comparability ol the transition probability

e Definition 3 (st-Comparison of Stochastic Matrices) Let I’ and

Comparison for Markov Chains

matrices yicld sufficient conditions for the stochastic comparison of
MC.

Q be two stochastic matrices. I” <g Q if and only if I . <q Qi+ for
all 1.

-
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e Average population, loss rates or tail probabilities are non decreasing
functions.
e Bounds on the distribution imply bounds on these performance indices

as well.

e St-bounds arc valid for transicnt distributions as well as the steady

state (we first study the steady-state here).

PRUSM
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e Definition 4 (St-Monotone Matrix) Let I’ be a stochastic matriz,

e St-monotone matrices are completely characterized (this is not true for

e Definition 5 Let I’ be a stochastic maotriz. I is st-monotone if and

e Property 1 lel P be a slochaslic malriz, P is sl-monolone if and

st-Monotone Matrix

1 g st-monotone if and only if for all v and v, if u <g v then
ul’ <g v’

other orderings, see [3]).

only if Jor all w and v, u <, v implies lhal uP <, vP.

only if for all i, j > 1, we have P; . <g P;.

PRUSM
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[ 0.1 02 06 0.1 |
0.1 01 0.2 06
[ ] is monotone.
0.0 0.1 03 06
| 0.0 0.0 0.1 0.9 |
[ 0.1 02 06 0.1 |
0.2 0.1 0.1 0.6 |.
[ ] 1s not monotone.
0.0 0.1 03 06
| 0.1 0.0 0.1 08 |
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Relations and

on the elements of Q:

e Thus, assuming that /2 is not monotone, we obtain a set of inequalities

< N0, g g
-~ Lif=4 Wik vV 1,7

Lik=j
iZZjQi.k; <Y Qi Vi

e [t is possible to usc a sct of cqualities, instead of incqualitics:

ZZ:j Czl N
ZZ:]’ C)i+l,k

ZZ:/ jjl,k'
"NL(J.’I,‘(ZZ:j Qik. ZZ:/ Picig) Yig

e Properly ordered (in increasing order for ¢ and in decreasing order for
J in previous system), a constructive way to obtain a stochastic bound
(ALGORITLHMS).
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rrlsm ANR Projects Blanc SMS and Sctln Surepaths, Checkbound

[19/88]

: Fundamental theorem

Theorem 1 Lel X (1) and Y (1) be fwo DTMC and P and () be lheir
respeclive stochastic maltrices. If

o X(0) <5 Y(0),
e st-mmonotonicity of at least one of the matrices holds,
o st-comparability of the matrices holds, that is, I . < Qi Vi.

Then X (1) < Y(1),0 > 0.
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Conslruclion of an upper bound ) :P <, Q and Q is <, monolone
Column n:

Qi D

For i=2ton Do Q;, =max(P;,,Qi—1 )

Column j, n—12>j>2:

For 7 n—1downto 2 Do
Qi g
For i 2ton Do
Qiy  wmax( oy Lok, D ey Qim1k) — Doy Qiks
End
End

Column 1:

For i ltonDo Qi1 1->7 o,Qik;
: - - - -
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05 02 01 02 0.0
0.1 07 01 00 0.1
1 02 01 05 02 00
0.1 00 01 07 0.1
0.0 02 02 01 05
e Omuce an element is obtained, we can compute the element on the left
and below.
e Begin with clement (1, n).
e Proceed by row or by column.
e The sumiations Zf: y Qi—1; and Zﬁ: it Q;,; are already computed
when we need them. Store to avoid computations. /
rrlsm ANR Projects Blanc SMS and Sctln Surepaths, Checkbound [21/88]

-

\.

e Compule column n (st-monotonicity implics that the clements are non

decreasing):

05 02 01 02 00|
0.1
0.1
0.1
0.5

-
I’RﬂsM
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First steps

e [irst row is unchanged:

05 02 01 02 00|

PRUSM
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e Compute column n — 1 (st-monotonicity implies that the sums of the

last two elements i a row are non decreasing):

(05 02 01 02 00|
0.1 0.1
0.1 0.1
0.7 0.1

I 03 05

PRUSM
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0 02 01 02 00
01 06 01 01 01
e Finally @  ©(L’1) 0.1 02 05 01 0.1

0.1 00 01 07 041
i 0.0 01 01 03 0.

(a4

e w1 (0.180,0.252,0.184,0.278,0.106).
o T  (0.143,0.190,0.167,0.357,0.113).
e We can check that: mp) <, 7g.

o Expectation: 1.87 for P1 and 2.16 for v(P1).

.
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e New algorithm (IMSUB) which does not delete transitions while

computing the bound.
e Theorem 2 el P be an irreducible [inile slochaslic malriz. Malriz Q
compuled from P wilh IMSUB is irreducible if and only if
- P(1,1) >0,
— every row of the lower lriangle of malriz P conlains al leasl one
posilive elemend.

0.5 0.2 0.1 0.2 0.0 0.5 0.2 0.1 0.2 0.0
6.1 0.7 0.1 (.0 0.1 0.1 0.6 )1 6.1 G.1
r— 0.2 0.1 0.5 0.2 0.0 = 0.1 0.2 ).5 6.1 .
0.0) (. (.a 0.7 (.3 0.7 0.3
0.0) (.2 (.2 0.1 (.5 .0 .0 i G.5 ¢.5

e States 0, L and 2 are transient.

\. J
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Irreducibility of ()

Definition 6 We denote by v(1°) the matriz obtained after application

[ VA TN Sl f NP N Py 12
of viencens s Atgoriiiin L0 (4 SLOCRASLLC THALTEE L7,

Duc to the subtraction operations, some clements of ©(P) may be zcro

even if the corresponding elements in [’ are non zero.

Tt may happen that matrix ¢(P) computed by Vincent’s algorithm is
not irreducible, cven if P is irreducible.

If matrix v(P) is reducible, it has onc essential class of states. Tt is still

possible to compute the steady-state distribution for this class.

J
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Optimality

Theorem 3 (Optimality) Vincenl’s algorithm provides the smallest
st-monolone upper bound for a malrizx P: i.e. if we consider U anolher
sl-monolone upper bounding DTMC for P lhen v(P) <, U [1].

Proof based on properties of (max,+) equations.
However bounds on the probability distributions may still be improved.

The former theorem only states that Vincent's algorithm provides the

smallest matrix according to the st-ordering of matrices.

The sparsc matrix and tensor versions of most of the algorithms arce

straightforward.

PRUSM
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e Bascd on the same relations.

e Consider another ordering for the index of the rows and the columns.

o Another operator (min instead of max).

.
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Ordinary lumpability

e Uscd by Truffet with st-comparison to model ATM switch [48].

e Lumpability implies a state space reduction. (decomposition of the

chain into macro-states)

e Definition 7 (ordinary lumpability) Let X be an irreducible finite
DTMC, Q its matriz, let Ay be a partition of the states. X is ordinary
lumpable according to Ay, iff for all states e and f in the same

arbitrary macro state A;, we have:

Z Qej = Z qr; YV macro— stale Ay
JEA, JEA,

e Ordinary lumpability constraints are cousistent with st-monotonicity.

e An algorithm is proposed by Truffet |48].

J

-
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Methodology for simplification

v(P) is, in general, as diflicult as P to analyzc.

matrix v(P) may have many more positive elements than matrix P

and it may be cven completely filled.

Use the inequalities (degree of freedom) and build a matrix simpler to

analyzc.

Fasy to solve : matrices with structural or numerical properties

{(Pattern, Class C) or smaller matrices (lumpability, censored MC).

Use ad-hoc algorithims for the numerical resolution of structured
matrices or usual algorithms when the size of the bounding chain is

small enough.

No new assumptions on P.

PRUSM
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Assume that states are ordered according to the macro-state partition.
Ordinary lumpability = constant row sum for the block

The algorithm computes the matrix row by row with some particular

work for block boundarics.

Due to st-monotouicity, the maximal row sum is reached for the last

row of the block.

The values of the lumped matrix are obtained for the last row sumn of a

block (except for the last non zero block).

PRUSM
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05 02]02 00 0.1
02 04]02 02 00
e P6=102 0301 01 03
01 0203 04 O

| 03 0303 0 0.1

o We divide the state-space into two macro-states: (1,2) and (3,4, 3).

.
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f VMarious nnplementation E

e LMSUB: Sparse matrix implementation of Truffet’s algorithm [13].
e LLIMSUB: add the irreducibility constraint (as TMSUB) [23].

e SAN2LMSUR: the input is a sum of tensor products. The output is a

sparsc matrix [26].

-
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e The bounding matrix and the row sums for the first block:

05 02102 00 0.1 0.3
02 04102 01 0.1 0.4

e The lumpable matrix and the lumped onc:

04 02]03 00 0.1

02 04]02 01 0.1 0.6 04

PRUSM
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e [or Optical Packet Switching (ie not an OBS, not a circuit)
e Deflection routing

o Fixed PPacket Size

e No buffer but some Fiber Delay Loops

e The ROM/ROMEQ architecture proposed by Aleatel

e m add and drop links. 1 transit links.

PRUSM
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Add and Drop Links

AnE

0

—
O I
Creansit Tinks ( Iransit Links {out)
‘ =
(in}
0 .

0000~

Figure 1: ROM core network architecture
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Adding FDL helps to reduce the effect of a deflection.

1f a packet must be deflected, we store it in the FDL instead of sending

it a wrong direction.

Using DL is denoted as local deflection (mmch shorter delay than

global deflection).

The FDIL is a fixed delay not a buffer. A packet leaves after a fixed

delay. If there is an empty slot before, it cannot use it.

Configuration an arbitrary number of FDI. (thcory) and with onc or

two FDL (numerical analysis)
Delays: 1 or 2 (any integer for the theory).

Question: How many FDI. and sizc of the loops to obtain a sufficiently

J

low number of global deflections ?

.
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Shortest Path Deflection Routing

Switches attempt to forward packets along a shortest hop path to their

destination.

Each link can send a finite number of packets per time-slot (the link

capacity).
No Buffer: incoming packets have to be sent immediately

1f the number of packets which requires a link is larger than the link

capacity, some of them will be misdirected or deflected

Deflected packets will travel on longer paths.

.
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o

4 input links, 1 output links, f wavelentghs per link
iid batch arrivals

uniform or almost uniform routing

a small network (model of a core)

a fixed probability d to leave the network

Markov chain

without IF'DL: a simnple numerical computation

1 I'DL and delay 1 a small Markov chain, usual algorithm on MC
(GTH)

Markov chain of order 2: to model the I'DL with delay equal to 2 you
must know the number of packets stored at time { — 1 and { — 2. Some

J

possible reduction technique (lumpability) but it remains difficult.

.
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e Bounds on the number of global deflection rather than exact result
e Stochastic bounds arc usually based on total ordering
o A lot of useless constraints with the total ordering

e llere with a convenient partial order, the initial model is monotone.
AVOID to build a monotone BOUND.

e 3 Steps
— PProof of the monotony of the initial model with n FDL
— Deriving a bound: not monotone but smaller chain

— Numerical analysis of the bound

.
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Numerical results

e DBatch: Truncated Poisson, or All or Nothing
e very accurate results

Table 1: Truncated Poisson distribution, f 128, block size 16

2*rate Mean real deflection
lower b. upper b.
0.8 1.3634e-26 | 2.0339e-25
0.85 4.0818¢-16 | 4. A4175¢-11
0.9 1.5349e-09 | 1.5737e-08
0.95 6.0196e-08 | 7.9197e-08
0.99 8.3536¢-08 | 9.1217¢-08

.
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Design of the bound

Make the bound lumpable
Do not lump states without packets in the longest FDL

Upper bound: Change the transitions to mimic a state with a larger

number of packets in the longest FDIL

Lower bound: Change the transitions to mimic a state with a smaller

number of packets in the longest FDL
Because of the fundamental result

Check the accuracy using lower bound and upper bounds.

.
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o

Censored Markov Chains

Consider a DTMC with finite state space S = LU E¢, En10¢ = ).
The censored DTMC with censoring sct 77 watches the chain when it is
in block I2.
For the steady-state, ecquivalent to the stochastic complement proposed
by Meyer in [37].

Qr  Qrr

Qrr Qp
The stochastic complement matrix for block 77:
S=Qp | Qee(I —Qu) 'Qrep-

Solving mg = mgS with > wg =1,

Consider a block decomposition of @Q:

ms is the conditional steady-state probabilitics for block 72 given that
the DTMC is in block I: g =7r/>. 7x.

J

.
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CMC and Bounds: Why

Size: @ and Qg are in general very large, so it is difficult to compute
(I — Q)" (I — Qpe is not singular if Q is not reducible [37]).

Information: @ is known but the other blocks may be computed or

1not...

Both cases: Deriving bounds on S.

Avoid to build Q- during the generation of the model. and compute
(I —Qp )17

Construct S such that S <. S.

Construct the monotone bound for S by Vincent’s algorithm ().

S <4 R and R is <z -monotone. Therefore: 7 <o ma

.
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Qe Qe
Q = U:.l \‘/. 8] \‘/:(i u;
) Q‘IJ’ I3 ) Q‘IJ’ .
0.1831 0.3661 0.4508 0.3
S=1 04661 04322 0.1017 | B=|06
0.3192 0.4983 0.1525 0.9
AXR Projects Blanc SMS and SetIn Surcpaths, Checkbound [47/88]

o

Known: QQr The simplest way [47] is to put the slack probability 4
to the last column for the upper bounding case,

to the first column for the lower bounding casc.

Known: @ and Qg g1 Better repartition of the slack probability :

DPY algorithm |22], proved optimal, (compute the ST-Max of all rows

of a normalized version of Qg g, left-multiply by 3 and add to @)
Known: Qp, @r- i, and Qp r-: BDF algorithm

Known: Qp, Qre i, @r.r and some transitions in pe pe: scveral

algorithms

Main idea: the more information you provide, the more accurate the
bound.

J

.
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o

Truffet’s algorithm for the bound S and Vincent’s algorithm for the
monotone bound 7/

0.1000 0.2000 0.7000
S" Qe+ 1[ 0 0 1 ] 0.3000 0.1000  0.6000
0.1000 0.0000  0.9000

0.1000 0.2000 0.7000
R'= | 0.1000 0.2000 0.7000
0.1000 0.0000 0.9000

.
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» are known

0.175 0.350 0475
S=Q | 6)[ 0.25 0.5 025 } = | 0450 0.400 0.150
0.325 0.450 0.225

e Monotone and upper-bounding matrix of S:

0.1750 0.3500 0.4750
=1 0.1750 0.3500 0.4750
0.1750 0.3500 0.4750

J

.
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Getting more

e lmproving accuracy.

e Trausient analysis of rewards.
e Absorbing DTMC.

e Qualitative properties.

e Worst Case Analysis.

~

.
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are known |

e New algorithm (Busic,Djalri,Fourncau)
[ ]
0.18 0.36 0.6
Sppr =] 046 042 0.12
0.31 048 0.18

e Remember that the exact result is:

0.1831 0.3661 0.4508
S= 04661 0.4322 0.1017
0.3192  0.4983 0.1525

.
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Improving accuracy

e First, a(P.d)= (1 —08)Id | P, for 6 € (0,1).
e [t has no cffect on the steady-state distribution.

e [t has a large influcnce on the effect of Vincent’s algorithm.

o

e Apply some trausformations [19] on [? before Vincent’s algorithm.

e Theorem 4 Lel P be a DTMC, and (wo different values §,,600 € (0,1)
such thal 61 < 02, Then Ty(a(ps1)) <st Tu(a(P,52)) <st To(P)-

.
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Definition 8 A stochastic matriz is said to be row diagonally
dominant (RDD) if all of ils diagonal elemenls are greater (han or

equal to 0.5.

Corollary 1 Let I’ be o RDD DTMC, then v(1?) and v(a(L’)) have

the same steady-state probability distribution.

Idea : For a RDD matrix, the diagonal scrves as a barrier for the
perturbation moving from the upper-triangular part to the strictly
lower-triangular part v(P).

o 1/2is sufficient to make an arbitrary stochastic matrix RDD.
Thus the trausformation /2 + Id/2 provides the best bound for these

linear transformations.

J

.
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Analysis of absorbing time

Theorem 6 [3/ Lel X and Y lwo DTMC on slale space 0..n
absorbing in n (only one absorbing state), with stochastic matrices I’
and @ assume that:

1. Xo Yy

2. PP or @ is st-monotone

3.0P <4 Q

then Ty < Tx where Tx is Lhe absorbing lime in n for chain X .
The output of LMSUB may be a lumped matrix which is still

absorbing (some technical conditions to check).

1t is much easier to compute the fundamental matrix on the lumped

chain.

.
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To obtain more accurale bounds.

Definition 9 Lel D be lhe sel of polynomials ©() such thal ®(1) =1,
D different of Idenlily, and all the coefficienls of ® are non negalive.

Proposition 1 Let &() be an arbitrary polynomial in D, then ®(1%)
has the same steady-state distribution than .
Theorem 5 Lel © be an arbilrary polynomial in D, Algorithm 1

applied on ®(P) provides a more accurale bound than the sleady-stale
distribulion of v(P) i.e.:

TP <st Ty(o(L2)) <st Tu(L)-

But it is not always truc that the higher the degree the more accurate

the bounds. ..

.
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o

Oualitative Properties

Low to prove that an absorbing time {(or a st-st reward) is increasing
with a parameter of the model ?

How to prove some algorithms based on Markov chains and mean
interaction.

A simple example rather than a general theory: Tind to end delay with

ST deflection routing [11].

Deflection routing: used when it is impossible to store packets waiting

for the best output (typically all optical switch).

Shortest. Path Deflection routing: try shortest paths but use deflection

when the number of packets exceeds the link capacity.

J

.
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Effect of a dellection

Definition 10 (Symmetric Graph) A graph G = (V. I7) is
symmelric iff for all i and j nodes in V', if (i,7) is a direcled edge in
2, (3.14) is also in F.

Property 2 n a symmelric graph, the deflecled packel originally al
distance k can jump at distance k — 1 or k + 1 or is still at distance k

(because of the shortest-path deflection routing).

Let p (unknown) be the deflection probability and R(p) the transition

matrix.

Major Assumption: Topology t Independence of packets | Uniform
distribution for the O-D imply an aggregated Markov chain whose

stale is the distance to the destination.

0 is an absorbing state.
f=)

.
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Transitions for an odd ring

If & 0 stay in the same state.
If the packet is not deflected: transition form k& to k& — 1 with
probability 1 — p.

If the packet is deflected: transition from k to k& + 1 except when
k sz where the packet is kept at distance sz after deflection (due to

the odd ring topology).

1 0 0 0

1l—p 0 P 0
R(p) =

0 1—p 0 2]

0 0 l—p p

.
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o

Topology and Initial Distribution

An odd ring

In the example, the size of the graph (sz) is 7.

Thus the states of the chain are 0.1, 2, 3.

Uniform destination and source (but source / destination).
Two nodes at cach distance.

Initial distribution for the ring with 7 nodes: (0,1/3,1/3,1/3).

.
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o

The matrix is monotone for all value of p; this is always truc for an
odd ring and always false for an even ring.
If p1 > p2 then R(p2) <4 R(p1).

X (p): Absorption time in 0: end to end delay in the network (without

taking into account the insertion delay at the interface).

E(X(p) <ooilp<l.

.
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If pl > p2 X(pl) <4 X(p2).
(X (p)) is increasing with p.
If we are able to find bounds ou p, we can derive bounds on X (p).

For instance pmin < p < pmax implics than
E(X (pmin)) < E(X(p)) < E(X (pmax)).

.
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Proving the existence of a solution

[ and g are increasing.
g(l) < L.
J and g arc upper-bounded.

Theorem 7 As lhe sequence (po  0,pir1 g([f(p:))) is increasing
and upper-bounded, it has a lirnit which is a solution of the fived point

system.

A proof of existence and the way for an algorithm.

.
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Fixed Point: deflection prob. p, load

Little’s law: E(N)  AE(X(p)) with A accepted arrival rate.
Link Utilization: « bz(;) because a directed ring with sz nodes has

2sz directed edges.
This gives an increasing function uw = [(p).
Another model p = g(u):

g is increasing and g(1) < 1. Indeed a conflict between k packets give
k — 1 deflection.

Thus you have a fixed point system v = [(p) and p = g(u).

.
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o

just give some intervals.

Worst Case Analysis

For analysis of stochastic matrices which are not completely specified.

For instance, the trausition probabilities are not exactly known; we

0 l—a—0 b a
I 1—a/2 a/2 0 af2

1—5/2 0 b/2  b/2

l—a—b 0 0 alb

with 1/3 <a < 1/2and 1/4 <b < 1/3.

For steady-state analysis see recent paper by Buchholz [8] based on

polyhedral theory.

.
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A stochastic approach

e Allows more general results.
e Transicnt and steady state analysis.
e Time to Failure (absorption).

Based on stochastic ordering and monotonicity.

We only consider here matrices where clements are in intervals (a

different approach is used in the section on icx-ordering).

\_ J

.
Pridsm AXR Projects Blanc SMS and SetIn Surcpaths, Checkbound [65/88]

4 N
uffet’s 2nd Alporithm

Construclion of the extreme upper bound P for the sel P(L,U)
For i=1ton Do
Ap=1=37 L
For j=n downto 1 Do
0 =min(A;, (Us; — Lij));
Piy=1L; | 0; A=A, —6;
End
End

e Lower Bound obtained by adding A from beginning by the first column

o IfU; . =L | A; Vi, it leads to complete in the last column for the
upper bound and in the first column for the lower bound

e A gimilar algorithm presented by Haddad and Morcaux for

\ substochastic matrices to improve the polyhedral approach [29).

.
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o

Partially defined DTMOCs

e Consider a sct of stochastic matrices P € P(L,U).
o Ly P<yU, VYPeEP.

e Construction of extreme stochastic matrices P and P by Truflet [47]

such that > <, > <4, I, VPP eP

.
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o

Optimality

o Let Q and @ be monotone matrices obtained by Vincent’s algorithm
for input matrices I° and 1.

e (Q and @ arc optimal monotone bounds for the set P, U):
1f mounotone stochastic matrices A, I3 exist such that
A<y P<g B YPeP(LU)
then A < @ and Q<u B

e Stochastic bounds on the transient and steady-state distributions for
the set, of matrices defined by P(L, U):
Moy (4) <o Mp(l) <t ﬂa([,) Vi, VP € P(L.U)

.
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Increasing Convex Ordering

o A variability ordering.

More complex than the usual st ordering.

e Morc accurate than st ordering when once deals with random variables.

If X <4 Y and F(

distributed.

X)=I(Y) then X and Y arc identically

Tt is possible to consider the sct of random variables with the same
expectation and find the maximal or minimal r.v. according to the icx

ordering.

J

.
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On discrete state space

X <Y = Y k=it Dap <> k=il )ys, Vi

In S Un

Tn 1+ 2z, < Yn 1+ 2yn

— Tn 2+ 2T, 1+ 3Tn < Yn 2 +2Yn 1+ 3yn
1+ 2z 4. e < Yy T2 4.+ nYn

~

.
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Increasing Convex Ordering

e Definition 11 Let X and Y be two random variables taking values on
a lolally ordered space space. Then we say lhal X is smaller than Y in

the 7:77,(,’7'6(15’7;71,9 conver sense (7;().”1,')/.

Jor all increasing and convex funclions [ whenever the expeclalions

exist.

e Thus "st” ordering (defined by increasing functions) implies 7iex”

ordering (defined by increasing and convex).

.
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o

e Three probability vectors: 2 (0.5,0.1,0.1,0.3), v  (0.3,0.2,0.2,0.3),

and 2 (0.3,0.2,0.4,0.1)

o X <,y as
—03<03and 0.1 12x0.3<0.212x03
—01+2x01+3x03<02+2x02+3%0.3

e The vectors 2 and 2 are not icx-comparable as

0.3 >0.1

— &3 z3, but

— 21 | 220 | B3 =12<13 =2 | 220 | 323.

.
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_ icx=monotone DIMC

Much harder constraints.

Ben Mamoun’s characterization for finite DTMC:

P is icx-monotone il 7;., PK;., > 0 component-wise with:

[ 1 0 o0 0] 10 0 0]
110 0 11 0 0
Zion 1 =2 1 0] K. 1 92 T ...0
L 0 1 —2 l_ _l n—1 n—2 ... l_

.
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Buffer size for optical packel switch with constant packet size

Without clectronic conversion (no clectronic bufler) : use Fiber Delay
loops instead

Without wavelength conversion: 1 scerver per wavelength.
K input links.

ROM and ROMEO architectures (Alcatel)
Batch/D/1/N queue

We know the average arrival rate (easy to measure) and the maximal

batch size K.

Can we dimension the buffer ?

.
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No Optimal Bound for icx ordering of DIMC

0.5 04 0.1
e Congider P= | 0.3 0.3 04
0.1 04 0.5

o and U1 and /2 which are icx monotone upper bound of /°:

0.5 04 0.1 0.5 0.2 0.3
Ul=103 03 04 U2=103 03 04
0.1 02 07 0.1 04 05

e [t is not possible to prove an optimal bound @ such that P <;.,. @,
Q <ijer Ul and Q <o U2.

e Tndecd the last columm of @ must be (0.1, 0.4,0.5)F which is not convex.

\- J

.
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4 N\

e Note that the model is almost-icx monotone.
¢ Usc icx-ordering.

e Find the worst arrival process according Lo icx-ordering and derive the

Markov chain of the queue.
e Scale the chain to allow icx-comparison.

e Make the scaled Markov chain iex monotone.

o J

.
rrilsm ANR Projects Blane SMS and SctIn Surcpaths, Checkbound [76/88]




\_

Worst Case Arrival

A (ag,...,ax) distribution of batch arrivals.
a = IZ(A) is known.

We assume: N > K (engineering) and a < 1 (stability).

Fo = the family of all distributions on the space {0,---, N} having

expectation o
icx-worst case distribution: ¢ = (% 0...., 0, %)

Property 3 (Maximal R.V. (see Shantikumar))

qefa and pjiul‘(bvpefa

.
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. Build an upper icx-bound @ for each row using the worst arrival

. Modify matrix Q: t5(Q) dQ + (1 —d)Id

process. @ is not icx-monotone

ls: same stecady-stale distribution, move some probability mass to the

diagonal clements to allow step 4.
Make the last row of {5(Q) increasing and convex

Change diagonal and sub-diagonal clements to make final matrix B

icx-monotone

J

.
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Matrix of the Chain

[ ]
a4 aK 0 0
a4 aK 0 0
0 an o axK 0
P=
0 0 ar ai aK

e A bound of the arrival rate is not sufficient.

e The matrix must be monotone (and P is not. .. ).

o

.
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Theorem 8 Suppose thal

. 1
) < —,
=7 | al”’

where U maX,—o 1 ’(K;i('ﬂ) Then,
1. B is a stochastic matriz.

2. B is irreducible.

3. Q Liex B

4. B is icx-monotone.

.
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Accuracy: a numerical example

e The perturbation added by the monotonicity constraint is relatively 7Y B 7 T
small (i.e. difference between st-st distribution of Q and B). verage numper or packes 1 the queue

e The main error comes from the main assumption (we ONLY know the

3Few K—10 K—10i
average and the max batch size). 5 B rel_errar || S B
0.5 5.000e | GG 5.000e - 00 < 10 15 5.00e | 01 5.0Ge - 01
; 8ic | ¢ 880c - | n 18 3e | 02 0Fe - (2
o A state dependent batch. (-8 ) LESDe] 0L ) LESDe- 01 < 10 1.93¢] 02 | 107w 02
0.0 4.140c | 01 4.140¢ - 01 8.9¢-09 3.60¢ | (i2 3.92¢ - (02 .
- P . . . . 03.95 &.64de401 R.645¢—01 5.45e402 G.06e—02 T.1e-01
e Back-pressurc mechanism. When the queue size is large, a signal is 099 || smreoedn | sosie—oz TO5etb2 | o.00e—02 | 1.830-01

sent to the sources of traffic to avoid congestion and shape the traffic.

Table 2: Comparison of the mean queuce length at the steady-state between

o Shaping: same average (not that important, we can reduce) and the state dependent (S) and the monotone upper bound (B) for & 1000,
smaller variability. K =10 and K = 100.

e Smaller variability: smaller K.

e Threshold: 80% of the buller size.

\_ J \ J

. N
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