

Modeling and Analysis of Triple Play Services in Multimedia Internet

Natalia M. MarkovichICS, Russian Academy of Sciences, Moscow

Tien Van DoBudapest University of Technology and Economics, Budapest

Udo R. Krieger Otto-Friedrich Universität, Bamberg

> HET-NETs 2010Zakopane, January 2010

U. Krieger: Modeling Multimedia Internet – Hetnets 2010 1

Outline

- n Part I: Service Architecture of Multimedia Internet
	- П Infrastructure of a multimedia Internet
	- Protocol structures of multimedia services
	- п Resource management and multi-processing strategies
- n Part II: Modeling and Analysis of an Apache Web Server
	- п A queueing network describing a dynamic pool of service processes
	- П Workload modeling and performance analysis at the page layer
- n Part III: Service Analysis of a Media Server
	- П Performance modeling at the session level by a multi-class loss system
- n Part IV: Analysis of Packet-Switched Multimedia Streams
	- п Characterization of multimedia packet streams by measured data
	- п Statistical modeling of Qos indicators by a bufferless fluid approach
	- п Capacity requirements of peer-to-peer and VBR packet traffic
- n Part V: Conclusions and Open Issues

Network Structure and Layering in IPTV Architectures

Distribution Layer

- dissemination of content
- provided by an overlay infrastructure

Transport Layer

- physical transport infrastructure with optical signal transport in the core and close to the homes
- on top of a packet-switched network
- use of RTP/RTSP combined withQoS supported TCP/UDP/IP stack
- SIP signaling applied

U. Krieger: Modeling Multimedia Internet – Hetnets 2010 13

Virtualization of Server Processing

• virtualization of task processing, resource assignment and management in current operating systems

• a virtualization layer (VMM/VM) separates physical hardware and resource demands of application processing

- integration of different operating systems (guest OS)
	- running on one physical system (host

Example: **VMware Infrastructure** Consolidated **Villotion DRS** HA **THE THE VirtualCenter Management Server Virtual Machines** Virtual SMP **ESX Server VMFS** Enterprise servers Enterprise networkEnterprise Storage

Liu´s Workload Modeling at the Page Layer

Level-Dependent Matrix-Geometric Model

- System model $Z(t) = (I(t), J(t))$
	- $\,$ CTMC on finite state space {1,.., M \times N} x {0,..,L}
- n *level J(t)*
	- П number j of TCP sessions served or waiting in the listen queue
- n *phase* $I(t) = F(I_1(t), I_2(t))$ determined by
	- П ■ modulator variable $I_1(t) = i \in \{1, ..., M\}$ of a *Markov-modulated batch arrival* stream with M states (compound Poisson process)
		- having a generalized exponential (GE) interarrival time τ with distribution in phase i: $\Pr(0 < \tau_i < t) = (1 - \theta_i)(1 - e^{-\sigma_i t})$
		- \bullet random batches S of size s with distribution
	- \mathbf{r} qualist endrom number $1 \leq l_2(t) = h \leq N$ of available HTTP service processes
		- • governed by *exponentially distributed* creation and killing times of pooled servers with rates η and ε

State-Dependent Service Time Modeling

- service time as result of complex interaction
	- of the contention at physical resources: CPUs, disk operations
	- TCP flow control and segment transfer in the Internet
- application of Menasce´s QNW model
	- aproximation of the *state-dependent* s *ervice rate* μ *(p,k)* by the throughput T_p(k) of a closed QNW
	- given k requests served by p active processes in the system
	- $T_p(k) = T_p(p)$, k ≥ p
- applied alternative:
	- *identification by measurements*
- **compromise: accuracy vs. complexity**

Performance Measures

\n**mean number of idle service processes**

\n
$$
E(Idle) = \sum_{i=1}^{NM} \sum_{j=0}^{L} p_{i,j} \cdot \max(f_2(i) - j, 0)
$$
\n**probability** p_w that a new request is waiting for an idle child process

\n
$$
p_w = \sum_{i=1}^{NM} \sum_{j=0}^{L} \sum_{s=\max(f_2(i) - j, 0) + 1}^{\infty} p_{i,j} \cdot (1 - \theta_{f_1(i)}) \theta_{f_1(i)}^{s-1} \cdot \frac{\min((s - \max(f_2(i) - j, 0), L - j)\sigma_{f_1(i)}}{\overline{\sigma}})
$$
\nwith mean arrival rate

\n
$$
\overline{\sigma} = \sum_{l=1}^{M} \frac{\sigma_l}{(1 - \theta_l)^{r_l}}
$$
\nand steady state vector **r** of the modulator I_1 :

\n
$$
\mathbf{r} \cdot Q_x = 0 \quad ; \quad \mathbf{r} \cdot e_M = 1.
$$

Validation of the Approach by Measurements

• model validation in a test bed

- generation of HTTP traffic by Apache benchmark tool *ab*
- only **HTTP 1.0** used and *renewal model* applied
- model parameters: hmin = 5, hmax=10, N=30, L = 40

•relative accuracy of the model subject to the measurements:

• mean number of idle processes: 3%; variance 20% deviation; abserr(wait prob) <8%

Object-Dependent Arrival Streams

- popularity-dependent request patterns for streamed objects
	- П modelled by M object classes i
	- П requests determined by Zipf-Mandelbrot law

$$
f_i(\alpha, k) = C \cdot \frac{1}{(i+k)^{\alpha}}, \quad i \in \mathbb{N}, k \in \mathbb{N}, \alpha \in \mathbb{R}^+
$$

$$
C^{-1}=\sum_i \frac{1}{(i+k)^\alpha}
$$

п simplest heavy-tailed case used here: Zipf law

$$
f_i = f_i(\alpha, 0) = C \cdot \frac{1}{i^{\alpha}}
$$

- п request streams to objects
	- п **•** modelled by M Poisson streams of rate λ _i
	- rate estimation using non-homogeneous Poisson processes \blacksquare

Bandwidth Modeling

- \blacksquare Bandwidth modeling
	- П apply basic bandwidth units (BBU) of fixed sized b_0
		- e.g. b₀=64 kbps or 32 kbps
	- П determines K *traffic classes*
- \blacksquare Bandwidth requirement
	- depends on used codec and spatial resolution

- П can use ^a*peak-bandwidth* description
	- approach applied here
- п or *sustainable* or *equivalent bandwidth* model (R. Guerin and others)
	- often too complex
	- requires burst level modeling, e.g. by on-off sources, at packet level
- \blacksquare traffic classes of objects

 $TC_i = \{j \in \{1, 2, ..., M\} | b(O_j) = c_i\}$

Modeling Service Durations

- \blacksquare three main object-dependent components for each class i
	- *playback time* D_i
		- determined by length and rate of the video stream
		- deterministic length of mean 1/d
		- modelled by an exponential distribution
	- *inspection time* I_i
		- determined by object type and user behavior
		- mixture of exponential and uniform distribution
		- $\,$ modelled by an exponential distribution with mean 1/ $\chi_{\rm i}$
	- n selection ratio β_i for a full playback of the video stream

Modeling Service Durations

 \blacksquare Service time distribution function

$$
F_i(x) = \mathbb{P}\{S_i \le x\} = \beta_i \mathbb{P}\{D_i \le x\} + (1 - \beta_i)\mathbb{P}\{\min(I_i, D_i) \le x\}
$$

= $\beta_i \mathbb{P}\{D_i \le x\} + (1 - \beta_i)[1 - (1 - \mathbb{P}\{I_i \le x\})(1 - \mathbb{P}\{D_i \le x\})]$

•Mean service time

$$
\mathbb{E}(S_i) = 1/\mu_i = \beta_i \frac{1}{d_i} + (1 - \beta_i) \frac{1}{d_i + \chi_i}
$$

$$
= \frac{\beta_i \chi_i + d_i}{d_i(d_i + \chi_i)}
$$

$$
= \frac{\mathbb{E}(S_i)(\beta_i \mathbb{E}(S_i) + \mathbb{E}(I_i))}{\mathbb{E}(I_i) + \mathbb{E}(S_i)}
$$

• Mean service time of an aggregated traffic stream

$$
\mathbb{E}(T_i) = 1/\tau_i = \sum_{j \in TC_i} \frac{\lambda_j}{\xi_i} \frac{\mathbb{E}(D_j)}{\mathbb{E}(D_j) + \mathbb{E}(I_j)} [\beta_j \mathbb{E}(D_j) + \mathbb{E}(I_j)]
$$

Product-Form Steady-State Distribution

•State space

$$
\Sigma = \{n = (n_1, \dots, n_K) \in \mathbb{N}_0^K | 0 \le n_i \le \lfloor C/b_i \rfloor, i \in \{1, \dots, K\}, b^t n \le C\}
$$

$$
\Sigma(j) = \{n \in \Sigma | b^t n = j\}
$$

$$
\Sigma_k = \bigcup_{j=0}^C \Sigma(j - b^t e_k) = \{n \in \Sigma | b^t n \le C - b_k\}
$$

$$
\Sigma_0 = \bigcup_{j=0}^C \Sigma(j) = \{n \in \Sigma | b^t n \le C\}
$$

•Steady-state distribution of class-related Markov vector process $X(t) = (X_i(t))$

$$
\pi(n) = \frac{1}{G} \cdot \prod_{i=1}^{K} \frac{\rho_i^{n_i}}{n_i!}, \quad n \in \Sigma, \quad G = \sum_{n \in \Sigma} \prod_{i=1}^{K} \frac{\rho_i^{n_i}}{n_i!}, \quad \rho_i = \rho_i(\alpha) = \lambda_i / \mu_i = \lambda p_i(\alpha) / \mu_i
$$

$$
q(j) = \sum_{n \in \Sigma(j)} \pi(n), \quad R_k(j) = \sum_{n \in \Sigma(j)} n_k \pi(n) \quad q(j) = \frac{1}{j} \sum_{i=1}^{K} b_i \rho_i q(j - b_i), \quad j = 0, 1, ..., C
$$

$$
G(C) = \sum_{n \in \Sigma_0} \prod_{i=1}^{K} \frac{\rho_i^{n_i}}{n_i!}, \quad G(C - b_k) = \sum_{n \in \Sigma_k} \prod_{i=1}^{K} \frac{\rho_i^{n_i}}{n_i!}
$$

U. Krieger: Modeling Multimedia Internet – Hetnets 2010 41

Performance Characteristics

 \blacksquare Utilization

$$
Y = b^t \cdot X,
$$

$$
U = \mathbb{E}(Y) = \sum_{j=0}^{C} j \mathbb{P} \{ b^t X = j \} = \sum_{j=1}^{C} j q(j)
$$

 \blacksquare Blocking of service class i

$$
B_i = 1 - \mathbb{P}\{b^t X \le C - b^t e_i\} = 1 - \frac{G(C - b_i)}{G(C)}
$$

 \blacksquare Throughput of class i

$$
T_i = \lambda_i \cdot (1 - B_i)
$$

Arrival-Sensitivity on the Tail-Index of the Popularity Distribution

n given Poisson r.v. $Y_i \sim \text{Pois}(\rho_j(\alpha))$

$$
\mathbb{P}\{Y_j = n\} = e^{-\rho_j(\alpha)} \frac{\rho_j(\alpha)^n}{n!}
$$

•exhibits monotonicity in log-likelihood ordering

- $\bullet \,$ monotone increasing in $\lambda_{\sf j}$
decreasing in $\mu_{\sf i}$ decreasing in μ_i
- $\bullet\,$ behavior in α depends on class j
- occupancy X_i and thoughput
behavior inherited

U. Krieger: Modeling Multimedia Internet – Hetnets 2010 44

Case Study and its Parameter Settings

 \blacksquare Illustration of the Markovian modeling approach

$$
p(1.2,3) = (0.587, 0.256, 0.157)^{t}
$$

\n
$$
p(1.5,3) = (0.647, 0.229, 0.124)^{t}
$$

\n
$$
p(2,3) = (0.735, 0.184, 0.082)^{t}
$$

$$
\mu_1 = 1.5, \mu_2 = 1, \mu_3 = 0.833,
$$

$$
b = (1, 2, 3)^t.
$$

 α

C	B_1	B ₂	B_3	GВ	TH_1	TH_2	TH_3		U/C
400	0.034	0.067	0.099	0.053	5.672	2.385	1.416	373.497	0.934
300	0.044	0.087	0.128	0.068	5.611	2.334	1.37	279.887	0.933
200	0.064	0.124	0.18	0.098	5.497	2.239	1.288	186.29	0.931
140	0.087	0.166	0.24	0.131	5.363	2.131	1.195	130.146	0.93
120	0.098	0.188	0.269	0.148	5.294	2.076	1.149	111.437	0.929
100	0.114	0.216	0.307	0.17	5.203	2.005	1.09	92.733	0.927
80	0.135	0.254	0.357	0.2	5.077	1.908	1.011	74.037	0.925
60	0.167	0.308	0.427	0.244	4.89	1.768	0.901	55.353	0.923
40	0.22	0.394	0.532	0.314	4.581	1.548	0.735	36.696	0.917
20	0.328	0.554	0.708	0.446	3.946	1.139	0.458	18.103	0.905

Table 1: Study of a streaming media system with three service classes

Objectives of the measurement approach

- using *passive measurements Z*={Z₁, Z₂, .., Z_n} at the IP packet layer
(or Ethernet layer by monitoring tools like Wireshark, DAG etc.)
- n to characterize selected aspects of the transport performance (QoS metrics) and user satisfaction (QoE metrics)
- \blacksquare in terms of bivariate sequences $Z_i = (X_i, Y_i)$ determined by
	- *inter-arrival times* (IATs) Xi between packets of a VBR stream
	- n the associated *packet lengths* (PLs) Yi
- \blacksquare flow characterization on a *virtual* network link by
	- **the mean delivery time variation of successfully transferred** packets
	- the overall and mean byte loss determined by a bufferless fluid model
	- the lossless periods on a capacity-constrained link
		- motivated by wireless networking over error-prone channels

Skype Traffic Measurements

•prototypical home environment with 2 wireless segments and ADSL attachments

U. Krieger: Modeling Multimedia Internet – Hetnets 2010 50

Statistical Analysis After Data Partitioning

Requirements of a statistical analysis: stationarity and independence

- n pure stationarity not a realistic assumption for real data sets of triple play streams
- n independence achievable by partitioning of data into independent blocks of fixed or variable lengths *Lj ⁼*∑ *i=kj kj*−1+*Nj Xi* , *j* = 1, ..., *Ns*
	- e.g. by exceedances over the empirical 97% quantiles of the IATs $\{X_i\}$
	- n proof of independence by appropriate statistical Portmanteau tests (Runde, Lung-Box etc.)

U. Krieger: Modeling Multimedia Internet – Hetnets 2010 52

Features of P2P and VBR Packet Traffic

- \blacksquare often long-range dependent time series of IATs $\{X_i\}$ with heavy-tailed marginal distributions $F(x) = 1 - x^{-\alpha} I(x)$
	- determined by Hill's estimate of the extreme value index γ = 1/α on the п order statistics $X_{(i)}$ $\widehat{\gamma}^H(n,k) = \frac{1}{k} \sum_{i=1}^k \ln X_{(n-i+1)} - \ln X_{(n-k)}$

 \mathbf{u} • extremal index θ of maxima M_n= max X_i of IATs in blocks

$$
\mathbb{P}\{M_n \le u\} \approx \mathbb{P}^{\theta}\{\widetilde{M}_n \le u\} = F^{n\theta}(u)
$$

U. Krieger: Modeling Multimedia Internet – Hetnets 2010 53

Delivery Time Variation in a Bufferless Fluid Model

- determined for completely transferred packets by $y_i = \tau_i - \tau_{i-1} = t_i + d_i - (t_{i-1} + d_{i-1}) = \Delta t_i + \Delta d_i$ IATs at departure Δt_i with mean E*X* and delay jitter Δd_i
- •mean delivery time variation in case of data loss $d = (1 + 1/\theta)$ EX
	- with mean cluster size 1/θ
- derived from extremal index $\theta \in [0, 1]$
	- as indicator of changes in limiting df of max_i R_i
- working with representatives of QoS indicators in data blocks (*EVT block method*)
	- such as extreme rate values max R_i
- using instantaneous traffic rates $R_i = Y_i/X_i$ overshooting a capacity threshold ^u

Conclusions

- single-tier Web server architecture
	- study of Apache´s non-threaded multi-processing module Prefork
		- Markovian modeling by a queueing network with batch Markovian arrival process and a dynamic number of servers
	- П potential extensions
		- hybrid thread/process UNIX module MPM Worker
		- extension of the QNW model to heavy-tailed service times
- п single-tier streaming media server architecture
	- П Markovian modeling by a Erlang loss model
		- with popularity-dependent Poissonian batch Markovian arrival process
			- traffic classes determined by CBR bandwidth requirements
			- service times including object-dependent inspection behavior
		- closed-form analysis of resulting Σ M^x/M/C/C loss model
	- П potential extensions
		- QNW model with heavy-tailed service times
		- •optimized access control and bandwidth assignment for a server farm model
- п nonparametric statistical traffic characterization and Qos/QoE analysis of VBR or P2P packet traffic

References T. van Do, U.R. Krieger, R. Chakka: Performance Modeling of an ApacheWeb Server with a Dynamic Pool of Service Processes. Telecommunication Systems, 39(2-3), 117–129, November 2008. п U.R. Krieger, T. van Do: Performance Modeling of a Streaming Media Server. Proc. Fourth Euro-FGI Workshop on "New Trends in Modelling, Quantitative Methods and Measurements", Ghent, Belgium, May 31 - June 1, 2007.П Natalia M. Markovitch, Udo R. Krieger: Statistical Analysis of VoIP Flows Generated by Skype Users, *Proc. IEEE International Work-shop on Traffic Management and Traffic Engineering for the Future Internet*, FITraMEn, Porto, Portugal, 11–12 December, 2008. \blacksquare N.M. Markovich, U.R. Krieger: Statistical Analysis and Modeling of Peer-to-Peer Multimedia Traffic. In D. Kouvatsos, ed., Performance Handbook - Next Generation Internet, Lecture Notes in Computer Science, LNCS 5233, Springer, Heidelberg, to appear 2010. п U. Krieger et al.: Characterization of Web Services with Advanced Multimedia Components, W.JRA.S.20, Deliverable D.JRA.S.20.1, February 2007,

EuroNGI-project: http://*www.eurongi.org*

Acknowledgment

The authors acknowledge the partial support by the following projects:

- \blacksquare IST-FP6-NoE [EuroNGI/EuroFGI](http://eurongi.enst.fr/en_accueil.html),
- \blacksquare [COST IC0703,](http://www.tma-portal.eu/)
- \blacksquare BMBF-project [MDA 08/15,](http://www.ktr.uni-bamberg.de/project/mda/index.shtml)
- \blacksquare a Werner von Siemens Excellence Award by Siemens Hungary.