On the Generalisation of the Zipf-Mandelbrot Distribution and its Application to the Study of Queues with Heavy Tails

Demetres Kouvatsos

NetPEn

Networks and Performance Engineering Research Group, University of Bradford, UK

HET-NETs 2010

Outline

- Maximum Entropy (ME) Formalism
 - ME and GB Solutions for the State Probability Distributions of queues with bursty (GE-type)tails
- An Extended ME (EME) Formalism
 - EME Solutions for the State Probability Distributions of queues with heavy tails
- Numerical Experiments
- Conclusions and further remarks on the ME extension to the analysis of open QNMs

Motivation: Information Theory, Statistical Mechanics & Quantification Theory Dueues with Bursty & Heavy Tails

To consider alternative analytic methodologies for queues with bursty and heavy tails, based on a balanced trade-off between simplified assumptions to reduce complexity and actual real life system behaviour, leading to credible and cost-effective approximations for performance prediction and optimisation of telecommunication systems. Extended ME Formalism, Statistical Mechanics & Long-Range Interactions

In Statistical Mechanics:

Energy are assumed to be

"Extensive" variables

such as total energy \rightarrow ~ system size

(c.f., due to short-range interactions e.g., chemical bonds) Similarly, entropy is also assumed to be extensive.

"Non-extensive" variables

 \rightarrow energy no longer ~ system size

(c.f., due to long-range interactions such as gravity)

This makes life difficult in Statistical Mechanics!

Extended ME Formalism, Statistical Mechanics & Long-Range Interactions

Maximum Entropy (ME) Principle

{max Gibbs 'Extensive' Entropy Function,

subject to a mean value constraint of a quantity
 (e.g., system energy, # of molecules, volume)}

Applying Method of Lagrange Undetermined Multipliers

→ Geometric Steady State Prob. Distribution

(Lagrange multipliers are "intensive" variables ⇔ "extensive" ones with constrained means (e.g., energy ⇔ temperature, volume ⇔ pressure, # of molecules ⇔ chemical potential etc) Extended ME Formalism, Statistical Mechanics & Long-Range Interactions

 Generalised Maximum Entropy Principle
 {max the Havrda-Charvat 'non-extensive' entropy function (a quantitative measure of classification, subject to a mean value constraint}

→ Zipf-Mandelbrot Steady State Prob. Distribution with power-law (heavy) tails and non-extensivity real-valued parameter q

Analogies with Statistical Mechanics applications [Tsallis 1988] and the analysis of queues with bursty traffic & heavy tails [Assi 2000], [Kouvatsos & Assi 2002] / LRD traffic & heavy tails [Karmeshu & Sharma 2005], [Kouvatsos & Assi 2007] The Zipf-Mandelbrot Distribution

The **Zipf-Mandelbrot** distribution is a discrete probability distribution. It is a power-law distribution on ranked data.

The probability mass function (pmf) is of the form

$$p(n, u, s) = \frac{(n+u)^{-s}}{\sum_{n=1}^{N} (n+u)^{-s}}$$

- N the number of elements
- n, u real numbers
- s the value of the exponent characterizing the distribution

The Zipf-Mandelbrot Distribution

In the limit as $N \rightarrow \infty$, the sum $\sum_{n=1}^{N} (n+u)^{-s}$

becomes the **Hurwitz-Zeta** function $\zeta(u, s)$

- For finite N and u=0, the Zipf-Mandelbrot law becomes Zipf's law (both commonly used in linguistics, Information Sciences, insurance, the modelling of events and ensemble theory in statistical mechanics)
- For infinite N and u=0, the sum is recognized as the Zeta distribution

The G/G/1 Queue & G/G/1/N Censored Queue with Bursty and/or LRD Traffic Flows

A stable *G* /*G* /1 Queue

A censored G /G /1 / N Queue

{ λ , C^2a }: the mean arrival rate and the interarrival sq. coef. of variation H: Hurts parameter of the arrival process, *N*: Finite buffer capacity { μ , C^2s }: mean service rate and sq. coef. of variation. Maximum Entropy (ME) Formalism (Jaynes 1956a,b)

- System Specification
- Optimisation Problem Formulation
- Analytic Methodology
- ME Solution
- Basic Relations
- Overview of ME and Queueing Network Models (QNMs)

System Specification

- Q, General System;
- $S = \{S_0, S_1, \dots, S_n, \dots\}$

Finite or countable infinite set of states;

- P(S_n), state prob. distr. that Q is at state S_n;
- {<f_k>}, k=1, 2,, m <|Q|,</pre>

Set of prescribed mean values defined on the set of suitable functions:

{f₁(Sn), f₂(Sn),, f_m(Sn)}

Optimisation Problem Formulation

$$\max_{\mathsf{P}} \left\{ \mathsf{H}(\mathsf{P}) = \sum_{\mathsf{S}_n \in \mathsf{S}} \mathsf{P}(\mathsf{S}_n) \, \mathsf{logP}(\mathsf{S}_n) \right\}$$

subject to

$$\begin{split} &\sum_{S_n \in S} \mathsf{P}(S_n) = 1, \\ &\sum_{S_n \in S} f_k(S_n) \mathsf{P}(S_n) {=} {<} f_k {>}, \quad k{=}\; 1,\, 2,\, ...,\, m \end{split}$$

where m is less than he number of possible states.

Apply the Method of Lagrange's Undetermined Multipliers

ME Solution [Jaynes 1957a and 1957b]

$$\mathsf{P}(\mathsf{S}_{\mathsf{n}}) = \frac{1}{Z} \prod_{\mathsf{k}=1}^{\mathsf{m}} \mathsf{x}_{\mathsf{k}} \mathsf{f}_{\mathsf{k}}(\mathsf{S}_{\mathsf{n}}),$$

$$Z=e^{\beta_0} = \sum_{S_n \in S} \prod_{k=1}^m x_k f_k(S_n),$$

Normalising Constant

$$x_k = e^{-\beta_k}$$
, $k = 1, 2, ..., m$

 $\{\beta_k\}$ are the Lagrangian coefficients corresponding to constraints $\{\langle f_k \rangle\}, k=1, 2, ..., m$

Basic Relations

•
$$\frac{\partial \beta_0}{\partial \beta_k} = \langle f_k \rangle, \quad k = 1, 2, ..., m$$

•
$$\max_{P} \{H(P)\} = \beta_0 + \sum_{k=1}^{m} \beta_k < f_k > 0$$

ME & EME FORMALISMS FOR ANALYSING OPEN (QNMs)

A Stable G/G/1 Queue [Kouvatsos1994]

Maximise Shannon's Entropy Functional

 ∞

$$\max_{P} \left\{ H(P) = -\sum_{n=0}^{\infty} P(n) \log P(n) \right\}$$

subject to

Normalisation,
$$\sum_{n=0}^{\infty} P(n) = 1$$
,
 Mean queue length, $\sum_{n=0}^{\infty} np(n) = L$

• Utilisation,
$$\sum_{n=0}^{\infty} h(n)p(n) = 1 - p(0) = \rho$$
, $\rho = \frac{\lambda}{\mu}$, $0 < \rho < 1$
 $h(n) = 1$, if $n = 0$ or 0 otherwise

Apply the Method of Lagrange's Undetermined Multipliers

A Stable G/G/1 Queue (Cont.)

A ME Generalised Geometric Solution

$$P(n) = \begin{cases} 1-\rho, & n = 0\\ (1-\rho)gx^n, & n \ge 1 \end{cases}$$

$$g = \frac{\rho^2}{(L-\rho)(1-\rho)}, \quad \mathbf{x} = \frac{\mathbf{L}-\rho}{\mathbf{L}}$$

where

$$L = \frac{\rho}{2} \left(1 + \frac{1 + \rho C_s^2}{1 - \rho} \right)$$

Mean queue length in M/G/1 queue (Pollaczek-Khintchine Formula) C_s^2 : SCV of the service time, $C_a^2 = 1$. A Censored G/G/1/N Queue [Kouvatsos 1994]

Maximise Shannon's Entropy Functional

$$\max_{P}\left\{H(P)=-\sum_{n=0}^{\infty}P_{N}(n) \log P_{N}(n)\right\}$$

subject to

- The normalization, $\sum_{n=0}^{N} p_N(n) = 1$
- The mean queue length, $\sum_{n=0}^{N} np_N(n) = L_N$
- The utilisation, $\sum_{n=0}^{N} h(n)p(n) = 1 p_N(0) = U$
- Full buffer state probability, $\sum_{n=0}^{N} s(n) p_N(n) = \varphi = p_N(n), \ 0 < \varphi < 1$

where h(n) = 1, if n = 0 or 0 otherwise and s(n)=1, if n=N or 0 otherwise

A Censored G/G/1/NQueue

- Apply the Method of Lagrange's Undetermined Multipliers
- Obtain a Truncated Generalised Geometric ME Solution (expressed in terms of the single step recursions) →

$$P_N(1) = gxP_N(0)$$

 $P_N(n) = xP_N(n-1)$ $n = 2, ..., N-1$
 $P_N(N) = yxP_N(N-1)$

where

$$g = \frac{\sigma \rho \tau}{\sigma \rho + \tau (1 - \sigma \rho)}, \quad x = \frac{\sigma \rho + \tau (1 - \sigma)}{\sigma \rho + \tau (1 - \sigma \rho)}, \quad y = \frac{\sigma \rho + \tau (1 - \sigma \rho)}{\sigma + \tau (1 - \sigma)} \frac{1}{\tau},$$

$$\rho = \frac{\lambda}{\mu}, \quad \sigma = \frac{2}{C_a^2 + 1} \quad \text{and} \quad \tau = \frac{2}{C_s^2 + 1}$$

The ME solution satisfies the flow balance condition $\lambda (1-\pi) = \mu (1-P_N(0))$, where π is the blocking probability.

Connection with the GE-type Distribution

Theorem: The ME M/G/1 solution is equivalent to the queue length distr. of a stable M/G/1 queue with a GE-type service time prob. density function of the form

$$f(t) = (1-r)u_0(t) + r^2\mu e^{-r\mu t}, t \ge 0,$$

where
$$r = \frac{2}{C_s^2 + 1}$$
, $U_0(t) = +\infty$, if $t = 0$ or, 0, if $t \neq 0$.
Unit impulse function

This theoretical result can be shown by substituting **g**, **x** and **L** into the ME solution and equating its ztransform with the Laplace-Stieltjes transform of the service time [Kouvatsos1994]. Connection with the GE-type Distribution

Proof: The Pollaczek-Khintchin z-transform of is

$$Q(z) = \frac{F^*(\lambda - \lambda z)(1 - \rho)(1 - z)}{F^*(\lambda - \lambda z) - z}$$

where $F^*(\theta)$ is the Laplace-Stieltjes transform of the service time. This transform can be determined directly using the relation

$$Q(z) = \sum_{n=0}^{\infty} P(n) z^n, |z| \leq 1$$

This implies that

$$Q(z) = \frac{(1-\rho)[1-xz(1-r)]}{(1-xz)}$$

Connection with the GE-type Distribution

□ It can be easily verified that $Q(0) = 1-\rho$ and Q(1) = 1. Equating the right-hand sides of both equation, substituting for x and ρ and solving for F*(λ - λz), the following result is obtained (with r = 2 / (1+C_s^2))

$$F^*(\lambda - \lambda z) = \frac{r\mu + (1 - r)(\lambda - \lambda z)}{r\mu + \lambda - \lambda z}$$

□ Substituting θ for (λ - λ z), becomes

$$F^{*}(\theta) = \frac{r\mu + (1-r)\theta}{r\mu + \theta} = (1-r) + \frac{r^{2}\mu}{r\mu + \theta}$$

□ By inverting $F^*(\theta)$, the result follows. Q.E.D

The GE-type Distribution

- The ME solution of a stable M/G/1 queue is exact if G ≡ GE. Similarly for a stable GE/G/1 queue
- The GE-type distr. with parameters α and β ($0 \le \alpha \le 1$):

The underlying counting process of the GE-type distr. is a compound Poisson process with Geo distributed batch sizes and mean batch size 1/ α = (C² + 1)/2.

Interpretation of GE-type distribution

- GE is an extremal case of the family of two-phase exponential distributions having the same {v, C²(>1) }
- GE is a bulk type distribution with an underlying counting process equivalent to a Compound Poisson Process (CPP) with parameter $2v/(C^2+1)$ and a geometrically distributed bulk size with mean $(1+C^2)/2$ and SCV $(C^2-1)/(C^2+1)$ i.e.,

$$P(N_{cp} = n) = \begin{cases} \sum_{i=1}^{n} \frac{\sigma^{i}}{i!} e^{-\sigma} {\binom{n-1}{i-1}} \tau^{i} (1-\tau)^{n-i}, n \ge 1 \\ e^{-\sigma}, n = 0 \end{cases}$$

where N_{cp} is the random variable of the number of events per unit time.

Global Balance Solution for the Censored GE/GE/1/N Queue

GE-Type Algebra

- GE-type Transition Rates
- GE-type Global Balance (GB) Equations
- GE-type GB Solution for the State Probability Distribution
- GE-Type GB Connection with ME Formalism
- GE-type Blocking Probability

Global Balance (GB) Solution for the Censored $GE_1/GE_2/1/NQueue$

Let $GE_1 \sim GE(\sigma, \sigma\lambda) \& GE_2 \sim GE(\tau, \tau\mu)$, where

- σ, τ are the stage selection probabilities of the nonzero exponential branches of the GE₁ and GE₂, respectively
- σλ, τμ are the arrival and service rates (at non-zero exponential branch of the queue), respectively i.e.,

$$\sigma = 2/(1+C^2a)$$

$$\tau = 2/(1+C^2s)$$

Global Balance (GB) Solution for the Censored GE1/GE2/1/N Queue (Cont.)

- The analysis utilises the bulk interpretation of the GE-type distribution.
- Suppose the number in the queue is 1≤k≤N-1 when a bulk of size n≥N-k arrives → Implications
 - Then N-k units are chosen randomly from the bulk to fill the empty spaces of the waiting room.
 - The remaining units of the bulk are considered to be lost.

GE-type GB Equations

$$\sigma \lambda \frac{\tau}{\tau(1-\sigma)+\sigma} P_0 = \tau \mu \sum_{k=1}^N (1-\tau)^{k-1} P_k$$

 $1 \le i \le N-1$

$$\left(\sigma\lambda+\tau\ \mu\right)P_{i}=\sigma\lambda\frac{\tau\ \sigma(1-\sigma)^{i-1}}{\tau(1-\sigma)+\sigma}P_{0}+\sigma\lambda\left(\sum_{k=1}^{i-1}\sigma(1-\sigma)^{i-k-1}\right)P_{k}+\tau\ \mu\left(\sum_{k=i+1}^{N}\tau(1-\tau)^{k-i-1}\right)P_{k}$$

$$\tau \mu P_{N} = \sigma \lambda \frac{\tau (1-\sigma)^{N-1}}{\tau (1-\sigma) + \sigma} P_{0} + \sigma \lambda \left(\sum_{k=1}^{N-1} (1-\sigma)^{N-k-1} \right) P_{k}$$

The GE-type GB State Probability Distribution

$$P_{N} = P_{0} \frac{\sigma \rho}{\tau(1-\sigma) + \sigma} \left(\frac{\sigma \rho + \tau(1-\sigma)}{\sigma \rho + \tau(1-\sigma \rho)} \right)^{N-1}, \qquad \rho = \frac{\lambda}{\mu}$$

$$P_{k} = P_{0} \frac{\sigma \rho \tau}{\sigma \rho + \tau (1 - \sigma \rho)} \left(\frac{\sigma \rho + \tau (1 - \sigma)}{\sigma \rho + \tau (1 - \sigma \rho)} \right)^{k - 1} , 1 \le k \le N - 1$$

$$P_{0} = \frac{1-\rho}{1-\rho} \frac{\sigma\rho + \tau(1-\sigma\rho)}{\sigma + \tau(1-\sigma)} \left(\frac{\sigma\rho + \tau(1-\sigma)}{\sigma\rho + \tau(1-\sigma\rho)}\right)^{N}$$

GB Connection with the ME Formalism

Maximise Entropy Functional

$$\max_{P}\left\{H(P) = -\sum_{n=0}^{\infty} P_N(k) \log P_N(k)\right\}$$

subject to normalisation, utilisation, mean queue length and full buffer state probability constraints satisfying the flow balance Condition: $\lambda(1-\pi) = \mu(1-PN(0))$, where π is the blocking probability.

ME Solution

$$P_{N}(1) = g x P_{N}(0)$$

$$P_{N}(k) = x P_{N}(k-1) \quad k = 2, ..., N-1$$

$$P_{N}(N) = y x P_{N}(N-1)$$

where

$$g = \frac{\sigma\rho\tau}{\sigma\rho + \tau(1 - \sigma\rho)}, \quad x = \frac{\sigma\rho + \tau(1 - \sigma)}{\sigma\rho + \tau(1 - \sigma\rho)}, \quad y = \frac{\sigma\rho + \tau(1 - \sigma\rho)}{\sigma + \tau(1 - \sigma)}\frac{1}{\tau},$$
$$\rho = \frac{\lambda}{\mu}, \qquad \sigma = \frac{2}{C_a^2 + 1} \qquad \text{and} \qquad \tau = \frac{2}{C_s^2 + 1}$$

The GE-type Blocking Probability

The probability of an arrival to find the queue full, π, is given by

$$\pi = P_N(N) + \sum_{k=1}^{N-1} P_N(k)(1-\sigma)^{N-k} + P_N(0) \frac{\tau(1-\sigma)^N}{\tau(1-\sigma) + \sigma}$$
$$= \sum_{k=0}^N \delta(k) P_N(k)(1-\sigma)^{N-n}$$
where
$$\delta(k) = \begin{cases} \frac{\tau}{\tau(1-\sigma) + \sigma} & k=0\\ 1 & k \neq 0 \end{cases}$$

 The proof is based on the bulk interpretation of the compound Poisson arrival process to the queue and the GE-type service time distribution. The GE-type Blocking Probability (cont.)

- The bulk finds N jobs in the GE/GE/1/N queue;
 Bulks arrive according to a Poisson (σλ) process. Thus a tagged arriver will find N in the system with probability P_N(N) (i.e., the same with that of a random observer).
- The bulk finds k jobs in GE/GE/1/N the queue (1≤ k ≤N-1); The size of the bulk is at least m = N-k+1 and the tagged arriver is one of those bulk members that will be blocked (turned away). Thus,

$$\sum_{k=1}^{N-1} P_N(k) \left(\sum_{m=N-k+1}^{\infty} m \frac{\sigma (1-\sigma)^{m-1}}{1/\sigma} \right) \frac{m - (N-k)}{m} = \sum_{k=1}^{N-1} P_N(k) (1-\sigma)^{N-k}$$

The GE-type Blocking Probability (cont.)

The bulk finds 0 jobs the GE/GE/1/N queue;

The bulk size m is at least (N+1), at most m-(N+1) jobs choose the null GE branch from the front part of the bulk and the tagged arriver is one of those bulk units that will be blocked (turned away). Thus,

$$P_{N}(0)\sum_{m=N+1}^{\infty}\frac{m\sigma(1-\sigma)^{m-1}}{1/\sigma}\sum_{k=0}^{m-(N+1)}\tau(1-\tau)^{k}\frac{m-N-k}{m}=P_{N}(0)\frac{\tau(1-\sigma)^{N}}{\tau(1-\sigma)+\sigma}$$

The form of the GE-type blocking probability, π, of the GE/GE/1/N queue is obtained by adding the probabilities of these three mutually exclusive events.

Havrda-Charvat Generalised Entropy Function

The Havrda-Charvat generalised parametric entropy function, Sq, is defined by [Havrda & Charvat 1967]

$$S_q = \frac{C\left(1 - \sum_{i=0}^{\infty} p_i^{q}\right)}{q - 1}$$

 p_i , *i=0,1,...* are the state probabilities of the queue;

q is a real number measuring the degree of non-extensivity of the queue ;

C is a positive constant ;

Sq is a generalised measure of uncertainty in dynamic systems, which reduces to Shannon entropy function at the non-extensivity parameter $q \rightarrow 1$ limit H.

Generalised Entropy Maximisation: Generalization of Boltzmann Gibbs Statistics

In Statistical Mechanics, Tsallis (1988) proposed independently an equivalent to Havrda-Charvat entropy function $C(1 - \sum_{r=1}^{\infty} p_{r}^{q})$

$$S_q = \frac{C(1-\sum_{i=0}^{r} p_i^{*})}{q-1}$$

which was maximised subject to:

1.
$$\sum_{i=1}^{W} p_i = 1$$

2. $\sum_{i=1}^{W} \varepsilon_i p_i = U_q$

where W is the no. of microscopic configurations and $\{\epsilon_i, U_q\}$ are known as generalized spectrum and generalized internal energy.

Maximisation of S_q gives a Zipf-Mandelbrot power-type distribution with non-extensive properties.

Tsallis (1988) Solution

• Introduce α and β Lagrange multipliers and define the quantity $S_{\alpha} = \sum_{k=1}^{W} \sum_{k=1}^{W}$

$$\phi_q = \frac{\sigma_q}{C} - \alpha \sum_{i=1}^{W} p_i - \alpha \beta (q-1) \sum_{i=1}^{W} \varepsilon_i p_i$$

by taking
$$\frac{\partial \phi_q}{\partial p_i} = 0$$
, one obtains $p_i = \frac{\left[1 - \beta(q-1)\varepsilon_i\right]^{\frac{1}{q-1}}}{Z_q}$
where $Z_q = \sum_{i=1}^{W} \left[1 - \beta(q-1)\varepsilon_i\right]^{\frac{1}{q-1}}$

At the $q \rightarrow 1$ limit,

$$p_i = \frac{e^{-\beta \varepsilon_i}}{Z}$$
, with $Z = \sum_{i=1}^{W} e^{-\beta \varepsilon_i}$

i.e., solution of M/M/1 queue [Assi 2000, Kouvatsos and Assi 2002, Karmeshu & Sharma 2005]

G/G/1 Queue: An EME Framework

Maximise Generalised Entropy Functional

$$\max_{P} \left\{ S_{q} = \frac{C\left(1 - \sum_{i=0}^{\infty} p(n)^{q}\right)}{q - 1} \right\}$$

subject to

• The normalization,
$$\sum_{n=0}^{\infty} p(n) = 1$$

• The mean queue length, $\sum_{n=0}^{\infty} np(n) = L$

• The utilisation, $\sum_{n=0}^{\infty} h(n)p(n) = 1 - p(0) = \rho$, $\rho = \frac{\lambda}{\mu}$, $0 < \rho < 1$ where h(n) = 1, if n = 0 or otherwise.

Apply the Method of Lagrange's Undetermined Multipliers [Assi 2000], [Kouvatsos & Assi 2002, 2007]

G/G/1 Queue: An EME Framework.

A Generalised Zipf-Mandelbrot EME power-type distribution

$$p(n) = \frac{\left[1 + \alpha(1 - q)n + \beta(1 - q)h(n)\right]^{\frac{1}{q - 1}}}{\sum_{n=0}^{\infty} \left[1 + \alpha(1 - q)n + \beta(1 - q)h(n)\right]^{\frac{1}{q - 1}}}, \quad n = 0, 1, \dots$$

• At the $q \rightarrow 1$ limit,

$$p(n) = \frac{e^{-\lambda n - \beta h(n)}}{Z} = \frac{x^n g^{h(n)}}{Z}, \text{ with } Z = \sum_{n=0}^{\infty} x^n g^{h(n)}, x = e^{-\lambda}, g = e^{-\beta}$$

 \rightarrow ME state probability distribution of a stable G/G/1 queue

x and g are the Lagrangian coefficients corresponding to mql and server utilisation constraints. Moreover, ½<q<1.</p> G/G/1/N Queue: An EME Framework.
 Maximise Generalised Entropy Functional

$$\max_{P}\left\{S_{q}=\frac{C\left(1-\sum_{i=0}^{\infty}p_{N}(n)^{q}\right)}{q-1}\right\},$$

subject to:

- The normalization, $\sum_{n=0}^{N} p_N(n) = 1$
- The mean queue length, $\sum_{n=0}^{N} np_N(n) = L_N$
- The utilisation, $\sum_{n=0}^{N} h(n)p(n) = 1 p_N(0) = U$
- Full buffer state probability, $\sum_{n=0}^{N} s(n)p_N(n) = \varphi = p_N(n), \ 0 < \varphi < 1$ where h(n) = 1, if n = 0 or 0 ow. and s(n)=1, if n=N or 0 ow, satisfying the flow balance condition: $\lambda (1-\pi) = \mu(1-P_N(0))$ c.f., [Assi 2000, Kouvatsos & Assi 2002, 2007].

G/G/1/NQueue : An EME Framework

A Truncated Generalised Zipf-Mandelbrot EME power-type distribution

$$p_{N}(n) = \frac{\left[1 + \alpha(1 - q)n + \beta(1 - q)h(n) + \gamma(1 - q)s(n)\right]^{\frac{1}{q - 1}}}{\sum_{n=0}^{N} \left[1 + \alpha(1 - q)n + \beta(1 - q)h(n) + \gamma(1 - q)s(n)\right]^{\frac{1}{q - 1}}}$$

• At the $q \rightarrow 1$ limit,

$$p_{N}(n) = \frac{e^{-\alpha n - \beta h(n) - \gamma s(n)}}{\sum_{n=0}^{N} e^{-\alpha n - \beta h(n) - \gamma s(n)}} = \frac{x^{n} g^{h(n)} y^{s(n)}}{\sum_{n=0}^{N} x^{n} g^{h(n)} y^{s(n)}}, \ n = 0, 1, \dots N$$
$$x = e^{-\alpha}, \ g = e^{-\beta}, \ y = e^{-\gamma}$$

This is the corresponding known solution of a GE/GE/1/K queue. For q < 1 and for large number of jobs *n*, the EME solution follows the power law: $p_N(n) \sim n^{\frac{1}{q-1}}$, 1/2 < q < 1 Boundary Conditions and a Heuristic Relationship between q and H

- A heuristic relation between the non-extensivity parameter, *q* and the Hurst parameter, *H* can be achieved by using the boundary conditions
- The boundary conditions of the non-extensivity parameter q of Tsallis entropy solution is $\frac{1}{2} < q < 1$;
- The boundary conditions of Hurst parameter H of the fractional Brownian Motion (fBm) is $\frac{1}{2} < H < 1$;
- It is implied that for $q \rightarrow 1$ (Shannon's Entropy) $\rightarrow H \rightarrow 0.5$ (exponential distribution)
- for $q \rightarrow 1/2$ (max value of non extensivity parameter) $\rightarrow H \rightarrow 1$ (Pareto distribution with power law tails corresponding to max value of H)
- The following simple heuristic relationship is usually defined

H=1.5-q

[Karmeshu & Sharma 2005], [Kouvatsos & Assi 2007]

An EME Mean Queue Length

In the context of the EME approach, a mean queue length constraint for a fBM/M/1 queue (c.f., *[Karmeshu and Sharma 2005], [Kouvatsos & Assi 2007]*) was motivated by a reinterpretation of a formula proposed in Norros [1994] in the context of ATM networks, for calculating buffer capacity of a simple storage model with selfsimilar input traffic process modelled by a fBm as an input process with Hurst parameter, H, $H \in [0.5,1]$ and exponential service time :

$$< n >= rac{\rho^{1/2(1-H)}}{(1-\rho)^{H/(1-H)}}, \quad 0.5 < H < 1, \quad \rho = \lambda/\mu$$

where λ and μ are the mean arrival and service rates, respectively.

A Heuristic Generalisation for an EME Mean Queue Length

A heuristic extension of Norros formula [Norros 1994] was conjectured in [Kouvatsos & Assi 2007] for calculating the buffer capacity of a simple storage model with generalised fractional Brownian motion (gfBm) process as an input traffic and GE-type service time distribution, namely

$$< n > = \frac{\rho^{1/2(1-H)]}}{2^{1/2(1-H)]}} \left(\frac{\left(1 - \rho + C_a^2 + \rho C_s^2\right)^{1/2(1-H)]}}{\left(1 - \rho\right)^{H/(1-H)}} \right), \qquad 0.5 < H < 1, \quad \rho = \frac{\lambda}{\mu}$$

where C^2a and C^2s are the interarrival time and service time SCV and H is the Hurst parameter taking values in the interval [1/2, 1].

- For the computational implementation of the EME solutions, the generalised formula is adopted as the mql, *E(N)*, of a stable infinite capacity gfBm/GE/1 queue.
- For $H = \frac{1}{2}$, it yields the result for mean queue length of a stable GE/GE/1 queue which corresponds to the case $q \rightarrow 1$ in the proposed framework.

Overflow Probability

The probability distribution for the queue length distribution {p_N(n), n=0,1,...} can be rewritten in term of Hurwitz-Zeta function as,

$$p_{\kappa}(n) = \frac{\left[\frac{1+\beta(1-q)h(n)+\gamma(1-q)s(n)}{\alpha(1-q)}+n\right]^{\frac{1}{q-1}}}{\varsigma\left[\frac{1}{1-q}, \frac{1+\beta(1-q)h(n)+\gamma(1-q)s(n)}{\alpha(1-q)}\right]}, \ \{q > 0, \ n = 0, 1, \dots, K\}$$

the overflow probability,

$$P(n > x) = \left(\frac{1}{\zeta} \left[\frac{1}{1-q}, \frac{1+\beta(1-q)h(n)+\gamma(1-q)s(n)}{\alpha(1-q)}\right]\right) \left(\frac{1-q}{q}\right) \left[x + \frac{1+\beta(1-q)h(n)+\gamma(1-q)s(n)}{\alpha(1-q)}\right]^{\frac{-q}{1-q}} - \left(\frac{1}{\zeta} \left[\frac{1}{1-q}, \frac{1+\beta(1-q)h(n)+\gamma(1-q)s(n)}{\alpha(1-q)}\right]\right) \left(\frac{1-q}{q}\right) \sum_{n=x}^{N} \int_{0}^{1} u \left[u + n + \frac{1+\beta(1-q)h(n)+\gamma(1-q)s(n)}{\alpha(1-q)}\right]^{-(2-q)/(1-q)} du$$

For asymptotically large **x** a power law is determined by,

$$P(n > x) \sim Wx^{-q/(1-q)}, \quad W = \left(\frac{1}{\zeta} \left[\frac{1}{1-q}, \frac{1+\beta(1-q)h(n)+\gamma(1-q)s(n)}{\alpha(1-q)}\right]\right) \left(\frac{1-q}{q}\right)$$

• at the $q \rightarrow 1$ limit,

$$P(n > x) \sim e^{-\alpha x - \beta h(n) - \gamma s(n)}$$

Server Utilisation and Blocking Probability

U - 1 - n (0)

• The probability that server is busy (i.e., the server utilization, U)

$$=1 - \frac{\left[\alpha(1-q) + \beta(1-q)h(n) + \gamma(1-q)s(n)\right]^{\frac{1}{q-1}}}{\varsigma \left[\frac{1}{1-q}, \frac{1+\beta(1-q)h(n) + \gamma(1-q)s(n)}{\alpha(1-q)}\right]}$$

Using the flow balance condition, the blocking probability can be obtained by $\pi = 1 - U/\rho$

Note: All these formulae together with the associated algorithms below can be found in *[Kouvatsos & Assi 2007] & are generalisations to those reported in [Karmeshu & Sharma 2005].*

EME Analytic Algorithms EME ALGORITHM 1: The gfBm /GE/1 Queue

- Input Data { $q, \lambda, C_a^2, \mu, C_s^2$ }
- Begin
- Step 1 Calculate H=1.5-q and mean queue length, <n>
- Step 2 Set initial approximations of Lagrangian multipliers { α, β };
- Step 3 Solve constraints (2) and (3) via Newton-Raphson method wrt $\{\alpha, \beta\}$;
- Step 4 Obtain new values for $\{\alpha, \beta\}$;
- Step 5 Return to Step 3 until convergence of { α , β ;
- End
- Output Statistics: The Lagrange's multipliers { α, β} and state probabilities, {p(n)}.

EME Analytic Algorithms (cont.)

EME ALGORITHM 2: The Censored gfBm /GE/1/N Queue

- $\blacksquare \quad Input \ Data \left\{ N, \alpha, \beta, q, \lambda, C_a^2, \mu, C_s^2 \right\}$
- Begin
- Step 1 Initial approximation of Lagrangian multiplier γ ;
- Step 2 Solve constraints (1) and (4) using the Newton-Raphson method wrt ;
- Step 3 Obtain new values for γ ;
- Step 4 Return to Step 2 until convergence of γ ;
- Step 5 Using flow balance condition to compute blocking probability.
- End
- Output Statistics: The Lagrangian multipliers, γ, state probability (P_N(n)} and the blocking probability, π

The relation between $p_N(n)$ and n for a finite capacity queue with (q = 0.5, 0.6, 0.7, 0.9), $C^2a = 8$, $C^2s = 4$, $\lambda = 0.03$, $\mu = 0.2$ and N = 30.

The relation between the queue length distribution and *n* for a finite capacity queue with λ =0.02, μ =0.4, q = 0.6, C²s = 4 and N = 30

The relation between ρ and U (Utilisation) with {C²a = 1, 5 & 10}, C²s = 3, q = 0.6 and N = 20.

The relation between ρ and U (Utilisation) with C²a = 3, C²s = 4, q = {0.6,0.7,0.8,1}

The relation between traffic intensity, ρ and server utilisation, U = 1- P(0) for a finite capacity GfBm/GE/1/K queue with Ca2 = 20, Cs2 = 3 and q= 0.7, 0.8, 0.9.

The relation between the mean queue length and N (queue capacity) with C²a =4, C²s = 9, λ =0.1, μ =0.5 and (q =0.6, 0.7, 0.8, 0.9)

Conclusions & Extensions to Arbitrary Open Queueing Network Models (QNMs)

 Product-Form Approximations and Queue-by-Queue Decomposition
 of Arbitrary Open Queueing Network Models (QNMs) with Blocking

[Kouvatsos & Awan 2003]

Queue-by-Queue Decomposition of Open QNMs

- [1] D. D. Kouvatsos, Entropy Maximisation and Queueing Network Models, Annals of Operations Research, Vol. 48, pp. 63-126, 1994.
- [2] S. A. Assi, An nvestigation into Gen. Entropy Optimisation with Queueing Systems Applications, MSc Dissertation, NetPEn Res. Group, University of Bradford, 2000.
- [3] D. D. Kouvatsos and S. A. Assi, An Investigation into Gen. Entropy Optimisation with Queueing System Applications, Proc. of 3rd Annual PG Symposium on the Convergence of Telecoms, Networking and Broadcasting (PGNet 2002), Liverpool John Moores Univ. Publishers, ISBN 1-902560-086, pp. 409-414, 2002.
- [4] D. D. Kouvatsos and I. Awan, Entropy Maximisation and Open Queueing Networks with Priorities and Blocking, Performance Evaluation, Vol. 51, pp. 387-396, 2003.

- [5] D. D. Kouvatsos and S. A. Assi, On the Analysis of Queues with Long Range Dependent Traffic: An Extended Max. Entropy Approach, Proc. of3rd Euro-NGI Conf. on Networks-Design & Eng. for Heterogeneity, ISBN 1-4244-0856-3, Trodheim, Norway, pp.226-233, 2007.
- [6] D. D. Kouvatsos, On the Analysis Queues with Bursty and LRD Traffic Flows: An Extended Maximum Entropy Approach, Keynote Speech, PP Presentation, HET-NETs '08, Karlskrona, Sweden, 2008.
- [7] S.A. Assi, Extended Max. Entropy Analysis of QNMs with Finite Capacity and Wormhole Routing subject to Compound Poisson & Self- Similar Traffic Flows, PhD Thesis, NetPEn Res. Group, Univ. of Bradford, 2008.
- [8] D.D. Kouvatsos, Information Theoretic Analysis of Queueing Systems with Bursty and LRD Traffic Flows, Tutorial Presentation, Wireless Vitae 2009, Aalborg 2009.

[9] Karmeshu and S. Sharma, 'Long Tail Behaviour of Queue Lengths in Broadband Networks: Tsallis Entropy Framework', Technical Report - Private Communication, School of Computing and System Sciences, J. Nehru University, New Delhi, India, August 2005.

[10] I. Norros, 'A storage Model with Self-similar Input', Queueing Systems, Vol. 16, pp. 387-396, 1994.

[11] J.E. Shore and R.W. Johnson, 'Axiomatic Derivation of the principle of maximum Entropy and the principle of Minimum Cross-Entropy, IEEE Trans. Inf. Theory, Vol. IT-26, pp. 26-37, 1980.

[12] J.E. Shore and R. W. Johnson, Properties of Cross-Entropy Minimisation, *IEEE Tran, Information Theory*, Vol. IT-27, pp. 472-482, 1981

[13] J.H. Havrda and F. Charvat, 'Quantification Methods of Classificatory Processes: Concept of Structural Alpha Entropy, Kybernertica, Vol. 3, pp. 30-35, 1967.

[14] E.T. Jaynes, 'Information Theory and Statistical Mechanics', Phys. Rev. Vol. 106, pp. 620-630, 1957a.

[15] E.T. Jaynes, 'Information Theory and statistical Mechanics II', Phys. Rev. Vol. 108, pp. 171-190, 1957b.

[16] C. Tsallis, 'Possible Generalisation of Boltzmann-Gibbs Statistics, Journal of Statistical Physics, Vol. 52, Nos. 1-2, pp. 479-487, 1988.

[17] D.D. Kouvatsos and S.A. Assi, 'Entropy Maximisation and Queues with GE-type and Heavy Tails, Tutorial, Next Generation Internet: Performance Evaluation and Applications, Performance handbook, Springer, 2010 (to appear).

