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Motivation: Information Theory, Statistical Mechanics 

& Quantification Theory Queues with Bursty & Heavy Tails

To consider alternative analytic methodologies for queues

with bursty and heavy tails, based on a balanced trade-off

between simplified assumptions to reduce complexity and

actual real life system behaviour, leading to credible and

cost-effective approximations for performance prediction

and optimisation of telecommunication systems.
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Extended ME Formalism, Statistical Mechanics 

& Long-Range Interactions

In Statistical Mechanics: 

Energy are assumed to be

 “Extensive” variables 

such as total energy  ~ system size 

(c.f., due to short-range interactions e.g., chemical bonds)
Similarly, entropy is also assumed to be extensive.

 “Non-extensive” variables

energy no longer ~ system size

(c.f., due to long-range interactions such as gravity)

This makes life difficult in Statistical Mechanics!
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Extended ME Formalism, Statistical Mechanics 

& Long-Range Interactions

 Maximum Entropy (ME) Principle

{max Gibbs „Extensive‟ Entropy Function, 

subject to a mean value constraint of a quantity 

(e.g., system energy, # of molecules, volume)}

Applying Method of Lagrange Undetermined Multipliers 

 Geometric Steady State Prob. Distribution 

(Lagrange multipliers are 

“intensive” variables  “extensive” ones with constrained  means 

(e.g., energy  temperature, volume  pressure, 

# of molecules chemical potential etc)
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Extended ME Formalism, Statistical Mechanics 

& Long-Range Interactions

 Generalised Maximum Entropy Principle

{max the Havrda-Charvat „non-extensive‟ entropy 

function (a quantitative measure of classification, 

subject to a mean value constraint} 

 Zipf-Mandelbrot Steady State Prob. Distribution

with power-law (heavy) tails and 

non-extensivity real-valued parameter q

 Analogies with Statistical Mechanics applications [Tsallis
1988] and the analysis of queues with bursty traffic &
heavy tails [Assi 2000], [Kouvatsos & Assi 2002] / LRD
traffic & heavy tails [Karmeshu & Sharma 2005],
[Kouvatsos & Assi 2007]



The Zipf-Mandelbrot Distribution

The Zipf-Mandelbrot distribution is a discrete probability 

distribution. It is a power-law distribution on ranked data.

The probability mass function (pmf) is of the form

N - the number of elements

n, u - real numbers

s - the value of the exponent characterizing the   

distribution
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The Zipf-Mandelbrot Distribution

 In the limit as N∞, the sum

becomes the Hurwitz-Zeta function

 For finite N and u=0, the Zipf-Mandelbrot law becomes 

Zipf’s law (both commonly used in linguistics,  Informa-

tion Sciences, insurance, the  modelling  of  events  and 

ensemble theory in statistical mechanics )

 For  infinite  N and  u=0, the sum is recognized  as the 

Zeta distribution
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The G/G/1 Queue & G/G/1/N Censored Queue with Bursty 

and/or LRD Traffic Flows

 A stable G /G /1 Queue



2, , aC H

2, sC

2, , aC H

2, sC



 A censored G /G /1 / N Queue

N

{λ, C2a}: the mean arrival rate and the interarrival sq. coef. of variation

H:  Hurts parameter of the arrival process, N: Finite buffer capacity

{μ, C2s}: mean service rate and sq. coef. of variation.
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Maximum Entropy (ME) Formalism (Jaynes 1956a,b) 

 System Specification

 Optimisation Problem Formulation

 Analytic Methodology

 ME Solution

 Basic Relations

 Overview of ME and Queueing Network Models 

(QNMs)
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System Specification

 Q, General System;

 S = {S0, S1,….., Sn,…}

Finite or countable infinite set of states;

 P(Sn), state prob. distr. that Q is at state Sn;

 {<fk>}, k=1, 2, …., m <|Q|,

Set of prescribed mean values defined on the 

set of  suitable functions: 

{f1(Sn), f2(Sn), …., fm(Sn)}
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Optimisation Problem Formulation
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max H(P)= P(S ) logP(S ) 

subject  to




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
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n

n
S S

k n n k

S S

P(S ) 1,

f (S )P(S )=<f >,    k= 1, 2, ..., m

where m is less than he number of possible states.

Apply the Method of  

Lagrange’s Undetermined Multipliers
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ME Solution [Jaynes 1957a and 1957b]

m

n k k n

k=1

1
P(S ) = x f (S ),

Z


0

n

m
β

k k n

S S k=1

Z= e  = x f (S ),




Normalising Constant

k-β

kx = e ,    k= 1, 2, ..., m

{βk} are the  Lagrangian coefficients corresponding to 

constraints {<fk>}, k=1, 2, …, m
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Basic Relations
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ME & EME FORMALISMS FOR ANALYSING OPEN  (QNMs)

OPEN QNM WITH JOINT STATE PROBABILITY 

{P(n), n = (n1, n2, … , nM ), ni ≥ 0, ni 1,2, … ,M}

CLASSICAL QUEUEING THEORY

MAX ENTROPY / 

EXTENTED ENTROPY 
Maxp H(p)

MARGINAL MEAN

VALUE  CONSTRAINTS

ME FORMALISM & OPEN QNMs

PRODUCT FORM APPROXIMATION OF AN OPEN QNM

TRAFFIC FLOW ANALYSIS & ME QUEUE-BY-

QUEUE DECOMPOSITION OF OPEN QNMs

INTERPRETATION
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A Stable G/G/1 Queue [Kouvatsos1994]

 Maximise Shannon‟s Entropy Functional 

n=0

P(n) 1,




P
n=0

max H(P)=- P(n) logP(n) 
 

 
 



 Apply the Method of Lagrange‟s Undetermined Multipliers
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subject  to

 Normalisation,

 Mean queue length,

 Utilisation,

h(n) = 1, if n = 0 or 0 otherwise
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A Stable G/G/1 Queue (Cont.)

 A ME Generalised Geometric Solution
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Mean queue length in M/G/1 queue

(Pollaczek-Khintchine Formula)C2
s : 

SCV of the service time, C2
a = 1.
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A Censored G/G/1/N Queue [Kouvatsos 1994]

 Maximise Shannon‟s Entropy Functional
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subject  to

where h(n) = 1, if n = 0 or 0 otherwise and s(n)=1, if n=N or 0 otherwise
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A Censored G/G/1/N Queue
 Apply the Method of Lagrange‟s Undetermined Multipliers

 Obtain a Truncated Generalised Geometric ME Solution 

(expressed in terms of the single step recursions)  

(1) (0)

( ) ( 1)    2, ....,  -1

( ) ( 1)

N N

N N

N N

P gxP

P n xP n n N

P N yxP N



  

 

(1 ) (1 ) 1
,  ,   ,

(1 ) (1 ) (1 )
g x y

      

         

   
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The ME solution satisfies the flow balance condition 

λ (1-π) = μ(1-PN(0), where π is the blocking probability.
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Connection with the GE-type Distribution

 Theorem: The ME M/G/1 solution is equivalent to the

queue length distr. of a stable M/G/1 queue with a GE-

type service time prob. density function of the form

2

0( ) (1 ) ( ) ,  0,r tf t r u t r e t    

where
2

2
,

1s

r
C




u0(t) = + ∞, if t = 0 or, 0, if t ≠ 0.

Unit impulse function 

This theoretical result can be shown by substituting

g, x and L into the ME solution and equating its z-

transform with the Laplace-Stieltjes transform of

the service time [Kouvatsos1994].
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Connection with the GE-type Distribution

 Proof: The Pollaczek-Khintchin z-transform of is 

* ( )(1 )(1 )
( )

* ( )

F z z
Q z

F z z

  

 

  


 

where F*(θ) is the Laplace-Stieltjes transform of the

service time. This transform can be determined directly

using the relation
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Connection with the GE-type Distribution

 It can be easily verified that Q(0) = 1-ρ and Q(1) = 1.

Equating the right-hand sides of both equation,

substituting for x and ρ and solving for F*(λ-λz), the

following result is obtained (with r = 2 / (1+Cs
2)

(1 )( )
* ( )

r r z
F z

r z

  
 

  

  
 

 

 Substituting θ for (λ- λz), becomes

2(1 )
* ( ) (1 )

r r r
F r

r r

  


   

 
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 

 By inverting F*(θ), the result follows. Q.E.D
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The GE-type Distribution

 The ME solution of a stable M/G/1 queue is exact if

G ≡ GE. Similarly for a stable GE/G/1 queue

 The GE-type distr. with parameters α and β (0≤α≤ 1):

M
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1

C

C

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2

2
 

1C
 


2

2
 

1


 

C

( ) 1 ,  0,tF t e t   

 The underlying counting process of the GE-type distr.

is a compound Poisson process with Geo distributed

batch sizes and mean batch size 1/ α = (C2 + 1)/2.
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Interpretation of GE-type distribution

 GE is an extremal case of the family of two-phase exponential
distributions having the same {v, }

 GE is a bulk type distribution with an underlying counting
process equivalent to a Compound Poisson Process
(CPP) with parameter and a geometrically
distributed bulk size with mean and SCV

i.e.,

where   Ncp is the random variable of the number of events 

per unit time.
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Global Balance Solution for the Censored GE/GE/1/N Queue

 GE-Type Algebra

 GE-type Transition Rates

 GE-type Global Balance (GB) Equations

 GE-type GB Solution for the State Probability 

Distribution 

 GE-Type GB Connection with ME Formalism

 GE-type Blocking Probability
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Global Balance (GB) Solution for the Censored 

GE1/GE2/1/N Queue

Let  GE1 ~ GE(,) & GE2 ~ GE(, ), where 

 ,  are the stage selection probabilities of the non-

zero exponential branches of the GE1 and GE2,

respectively

 ,  are the arrival and service rates (at non-zero

exponential branch of the queue), respectively i.e.,

 = 2/(1+C2a)

 = 2/(1+C2s)
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Global Balance (GB) Solution for the Censored 

GE1/GE2/1/N Queue (Cont.)

 The analysis utilises the bulk interpretation of the
GE-type distribution.

 Suppose the number in the queue is 1≤k≤N-1
when a bulk of size n≥N-k arrives Implications

 Then N-k units are chosen randomly from the
bulk to fill the empty spaces of the waiting
room.

 The remaining units of the bulk are considered 
to be lost.
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GE-type GB Equations 
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The GE-type GB State Probability Distribution
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GB Connection with the ME Formalism

 Maximise Entropy Functional

0

max ( ) - ( ) log ( ) N N
P
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H P P k P k

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 
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subject   to  normalisation, utilisation, mean  queue  length and  full 

buffer   state   probability constraints  satisfying   the  flow  balance 

Condition:     λ(1-π) = μ(1-PN(0), where π is the blocking probability.

 ME Solution
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The GE-type Blocking Probability

 The probability of an arrival to find the queue full, π, is 
given by

1

1

(1 )
( ) ( )(1 ) (0)
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      k=0
(1 )( ) ,

1                          k 0



  




  
 

kwhere

 The proof is based on the bulk interpretation of the 
compound Poisson arrival process to the queue and the 
GE-type service  time distribution.
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The GE-type Blocking Probability (cont.)

 The bulk finds N jobs in the GE/GE/1/N queue;

Bulks arrive according to a Poisson () process. Thus a

tagged arriver will find N in the system with probability

PN(N) (i.e., the same with that of a random observer).

 The bulk finds k jobs in GE/GE/1/N the queue (1≤ k ≤N-1);

The size of the bulk is at least m = N-k+1 and the tagged

arriver is one of those bulk members that will be blocked

(turned away). Thus,

11 1

1
1 1

(1 ) ( )
( ) ( )(1 )
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N Nm N k
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m N k
P k m P k
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 
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 
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 
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The GE-type Blocking Probability (cont.)

 The bulk finds 0 jobs the GE/GE/1/N queue;

The  bulk  size  m is  at  least  (N+1),  at  most m-(N+1) jobs 

choose the null GE branch from the front part of the bulk and 

the  tagged  arriver  is  one of  those bulk  units  that  will  be 

blocked (turned away). Thus,

1 ( 1)

1 0

(1 ) (1 )
(0) (1 ) (0)

1/ (1 )

m Nm N
k

N N

m N k

m m N k
P P

m

   
 

   

  

  

   
 

 
 

 The  form  of  the  GE-type  blocking  probability, π , of the 

GE/GE/1/N queue is obtained  by adding the  probabilities 

of these three mutually exclusive events.



34

Havrda-Charvat Generalised Entropy Function

 The Havrda-Charvat generalised parametric entropy

function, Sq, is defined by [Havrda & Charvat 1967]

pi , i=0,1,… are the state probabilities of the queue;

q is a real number measuring the degree of

non-extensivity of the queue ;

C is a positive constant ;

Sq is a generalised measure of uncertainty in dynamic

systems, which reduces to Shannon entropy function at

the non-extensivity parameter q → 1 limit H.

 0
1

1

q

ii

q

C p
S

q










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Generalised Entropy Maximisation: 

Generalization of Boltzmann Gibbs Statistics

 In Statistical Mechanics, Tsallis (1988) proposed

independently an equivalent to Havrda-Charvat entropy

function

1

1

1.   1

2.   

W

ii

W

i i qi

p

p U













where W is the no. of microscopic configurations and {εi, Uq } are

known as generalized spectrum and generalized internal energy.

 Maximisation of Sq gives a Zipf-Mandelbrot power-type
distribution with non-extensive properties.

which was maximised

subject to:

 0
1

1

q

ii

q

C p
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q








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Tsallis (1988) Solution

 Introduce α and β Lagrange multipliers and define the 

quantity

At the q → 1 limit,

i.e., solution of M/M/1 queue  [Assi 2000, Kouvatsos and 

Assi 2002, Karmeshu & Sharma 2005]

 
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11 ( 1)
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q i
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1 1
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G/G/1 Queue: An EME Framework

0
 The normalization, ( ) 1

n
p n




 

0
 The mean queue length,  ( )

n
np n L




 

0
 The utilisation, ( ) ( ) 1 (0) ,        ,   0 1

n
h n p n p


  






      

 Maximise Generalised Entropy Functional

 0
1 ( )

max
1

q

i

q
P

C p n
S

q





  
 

 
 



subject  to

Apply the Method of Lagrange‟s Undetermined Multipliers

[Assi 2000], [Kouvatsos & Assi 2002, 2007]

where h(n) = 1, if n = 0 or otherwise.
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G/G/1 Queue: An EME Framework

A Generalised Zipf-Mandelbrot EME power-type distribution

 

 

1

1

1

1
0

1 (1 ) (1 ) ( )
( ) ,     0,1,...

1 (1 ) (1 ) ( )
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q n q h n
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   
 

   

 At the q → 1 limit,

( ) ( )
( ) -

0
( ) ,   with   ,  ,  

n h n n h n
n h n

n

e x g
p n Z x g x e g e

Z Z

 
 

 
 


    

ME state probability distribution of a stable G/G/1 queue

 x and g are the Lagrangian coefficients corresponding to
mql and server utilisation constraints. Moreover, ½<q<1.
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G/G/1/N Queue: An EME Framework 

 Maximise Generalised Entropy Functional

 0
1 ( )

max ,
1

q

Ni

q
P

C p n
S

q





  
 

 
 



0
  Full buffer state probability,  ( ) ( ) ( ),  0 1

N

N Nn
s n p n p n 


    

0
  The normalization, ( ) 1

N

Nn
p n


 

0
  The mean queue length,  ( )

N

N Nn
np n L


 

0
  The utilisation, ( ) ( ) 1 (0)

N

Nn
h n p n p U


   

where h(n) = 1, if n = 0 or 0 ow. and s(n)=1, if n=N or 0 ow,  

satisfying the flow balance condition: λ (1-π) = μ(1-PN(0)

c.f., [Assi 2000, Kouvatsos & Assi 2002, 2007].

subject to:
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 

 
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G/G/1/N Queue : An EME Framework

 At the q → 1 limit,

This is the corresponding known solution of a GE/GE/1/K queue.

For q<1 and  for  large  number  of  jobs n, the EME solution 

follows the power law:

-,  ,  x e g e y e     

 A Truncated Generalised Zipf-Mandelbrot EME power-type
distribution

1
1( ) ~ ,  1 2 1  q

Np n n q  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0
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Boundary Conditions and a Heuristic Relationship between q and H

 A heuristic relation between the non-extensivity parameter, q and
the Hurst parameter, H can be achieved by using the boundary
conditions

 The boundary conditions of the non-extensivity parameter q of
Tsallis entropy solution is ½< q <1;

 The boundary conditions of Hurst parameter H of the fractional
Brownian Motion (fBm) is ½ <H <1;

 It is implied that for q1 (Shannon‟s Entropy)  H0.5
(exponential distribution)

 for q1/2 (max value of non extensivity parameter) H1 (Pareto
distribution with power law tails corresponding to max value of H)

 The following simple heuristic relationship is usually defined

H=1.5-q 
[Karmeshu & Sharma 2005], [Kouvatsos & Assi 2007]
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An EME Mean Queue Length 

 In the context of the EME approach, a mean queue length constraint

for a fBM/M/1 queue (c.f., [Karmeshu and Sharma 2005],

[Kouvatsos & Assi 2007]) was motivated by a reinterpretation of a

formula proposed in Norros [1994] in the context of ATM networks,

for calculating buffer capacity of a simple storage model with self-

similar input traffic process modelled by a fBm as an input process

with Hurst parameter, H, and exponential service time :

where λ and µ are the mean arrival and service rates, respectively.

 

 

1
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



    


[0.5,1]H



43

A Heuristic Generalisation for an EME Mean Queue Length 

 A heuristic extension of Norros formula [Norros 1994] was conjectured
in [Kouvatsos & Assi 2007] for calculating the buffer capacity of a
simple storage model with generalised fractional Brownian motion
(gfBm) process as an input traffic and GE-type service time
distribution, namely

where C2a and C2s are the interarrival time and service time SCV and
H is the Hurst parameter taking values in the interval [1/2, 1].

 For the computational implementation of the EME solutions, the
generalised formula is adopted as the mql, E(N), of a stable infinite
capacity gfBm/GE/1 queue.

 For H = ½, it yields the result for mean queue length of a stable
GE/GE/1 queue which corresponds to the case q1 in the proposed
framework.
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Overflow Probability

 The probability distribution for the queue length distribution {pN(n),

n=0,1,…} can be rewritten in term of Hurwitz-Zeta function as,

 the overflow probability,

1
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Overflow Probability

 For asymptotically large x a power law is determined by,

 at the q → 1 limit,

(1 ) 11 1 (1 ) ( ) (1 ) ( )
( ) ~ ,   1 ,

1 (1 )

q q qq h n q s n
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q q q
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Server Utilisation and Blocking Probability

 The probability that server is busy (i.e., the server utilization, U )

 Using the flow balance condition, the blocking probability can be

obtained by

Note: All these formulae together with the associated algorithms

below can be found in [Kouvatsos & Assi 2007] & are

generalisations to those reported in [Karmeshu & Sharma 2005].
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EME Analytic Algorithms
EME ALGORITHM 1: The gfBm /GE/1 Queue

 Input Data {                  }

 Begin

 Step 1 Calculate H=1.5-q and mean queue length,  

 Step 2 Set initial approximations of Lagrangian multipliers {         };

 Step 3 Solve constraints (2) and (3) via Newton-Raphson method wrt     

{         };

 Step 4 Obtain new values for {        };

 Step 5 Return to Step 3 until convergence of {        };

 End

 Output Statistics: The Lagrange‟s multipliers {         } and state 

probabilities, {p(n)}.

2 2, , , ,a sq C C 

n 

, 

, 

, 

, 

, 
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EME Analytic Algorithms (cont.)

EME ALGORITHM 2: The Censored gfBm /GE/1/N Queue

 Input Data { }

 Begin 

 Step 1 Initial approximation of Lagrangian multiplier    ;

 Step 2 Solve constraints (1) and (4) using the Newton-

Raphson method wrt   ;

 Step 3 Obtain new values for   ;

 Step 4 Return to Step 2 until convergence of    ;

 Step 5 Using flow balance condition to compute blocking 

probability.

 End

 Output Statistics: The Lagrangian multipliers,   , state 

probability (PN(n)} and the blocking probability, π

2 2, , , , , , ,a sN q C C   
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Numerical Results

N

2 2

The relation between p (n) and n for a finite capacity queue with

(q = 0.5, 0.6, 0.7, 0.9) , C a = 8,  C s = 4, =0.03, =0.2 and N =30. 
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Numerical Results

2

The relation between the queue length distribution and  for a finite

capacity queue with =0.02, =0.4, q = 0.6, C s = 4 and N =30

n

 
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Numerical Results

2

2

The relation between  and U (Utilisation) with {C a = 1, 5 & 10},

C s = 3, q =0.6 and N =20. 


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Numerical Results

2

2

The relation between  and U (Utilisation) with C a = 3,

C s = 4, q ={0.6,0.7,0.8,1}


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Numerical Results

The relation between traffic intensity, ρ and server utilisation, U = 1- P(0) for a 

finite capacity GfBm/GE/1/K queue with Ca2 = 20, Cs2 = 3 and q=  0.7, 0.8, 0.9.
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Numerical Results

2 2

The relation between the mean queue length and  (queue capacity)

with C a =4, C s = 9, =0.1, =0.5 and (q =0.6, 0.7, 0.8, 0.9)

N

 
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Conclusions & Extensions to 

Arbitrary Open Queueing Network Models (QNMs)

• Product-Form Approximations and 

Queue-by-Queue Decomposition 

of Arbitrary Open Queueing Network Models 

(QNMs) with Blocking

[Kouvatsos & Awan 2003]
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Queue-by-Queue Decomposition of Open QNMs 
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