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Mobility Model for Mobility Management
OUTLINE

• General aspects: scenarios, cells, ….
• Residence time and call holding times.

– Cell and handoff areas.
• MM in location management• MM in location management.

– Tessellation of the plane.
– Random walk.
– Brownian motion.
– Gauss-Markov.

• Advanced synthetic models
• Macroscopic vision. Transportation theory.

Fluid flow models– Fluid flow models.
– Gravity models.
– Rush hour versus busy hour.
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– Flow, Speed and Density.
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MMMM

• Mobility Models are essential to perform 
l i i l kanalysis on wireless networks

• They have influence in Mobility Management:y y g
– Mobility tracking

• Location management• Location management.
• Resource management (for handovers).
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Scenario for mobility models
• Different geographical areas

– Hot spots
– Urban
– Highway/main roads

Open (rural)– Open (rural) 
• Tools

– Markovian models
– Transportation theory models
– Flow traffic models.

• AnalysisAnalysis
– Individual behavior Global (macroscopic) parameters

• Time dependency
– Stationary
– Non stationary
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Type of mobility models
• Markovian

– Characterization of individual movement behavior, 
– Random walk random waypoint Brownian motion– Random walk, random waypoint, Brownian motion,…
– At microscopic level

• Fluid flowFluid flow
– Characterization of aggregated traffic, ..
– At macroscopic level

Markovian models• Gravity models
– Characterization of flow of vehicles, person, ... 
– Very useful in transportation theory

• But they can be related:
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Type of cells
• Macro-cells (1 km – 40 km)

– Rural areas umbrellas in urban areasRural areas, umbrellas in urban areas, …
– Omni-directional 360º, sectors (120º, 60º)

• Microcells (100 m – 1 km)• Microcells (100 m 1 km)
– Streets, main roads, avenues, ..

Cigar shape beam along the highway– Cigar shape beam along the highway, …
• Picocells (10 m – 100 m)

Airports railway stations business areas indoors– Airports, railway stations, business areas, indoors, ...
– Less regular in shape
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Cell shape
• Irregular shape in practice

F t h ti h d i t• Features such as propagation, shadowing, etc.

• Regular shape when modelingRegular shape when modeling
• Triangle, square, hexagon, ..
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Mobility Model for Mobility Management
OUTLINE

• General aspects: scenarios, cells, ….

i i• Mobility models.
• Residence time and call holding times.

– Cell and handoff areas.
– Fitting distributions.

• MM in location management.MM in location management.
– Tessellation of the plane.
– Random walk.
– Brownian motion.
– Gauss-Markov.

• Macroscopic vision. Transportation theory.p p y
– Fluid flow models.
– Gravity models.

R h h b h
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– Rush hour versus busy hour.
– Flow, Speed and Density.



Types of Mobility Models
• Traces

Traces are mobility patterns that are captured from the– Traces are mobility patterns that are captured from the 
observation of realistic human trip movements.

– They are quite complex to characterize and there resultsThey are quite complex to characterize and there results 
are rather difficult to compare.

• Synthetic (Analytic )Synthetic (Analytic ,…)
– Attempt to realistically represent the behaviors of MTs.

They are based on simple driven parameters then easier– They are based on simple driven parameters, then easier 
to manage compared with trace models.

– Examples: Random Walk (RW) Random WaypointExamples: Random Walk (RW), Random Waypoint 
(RWP), Random Direction (RD), Gauss-Markov (GM), 
…..

MM for MMHET-NETs’10 10/77



Cell residence time
• Cell residence time

D d l d– Depends on movement related parameter:
• Speed 
• Cell geometry
• Geographical environment
• Trajectory of the mobile user
• …..

Trajectory

).exp()( ttf RRTR μμ −⋅=

 timeresidence Cell=RT

)p()(f RRTR μμ
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Call holding time
Mobile terminal in idle state (attached)

Mobile terminal with a call in progressp g

Call ends

Call startsCall starts

).exp()( ttf MMTM μμ −⋅=

timeholdingor Message Call=MT
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Channel holding time
Mobile terminal in idle state (attached)

Mobile terminal with a call in progressp g

Th

Tn

Tn = Cell residence time, starting in an arbitrary point in the cell

Th = Cell residence time, starting in an arbitrary point in the edge of the cell
),( min nMHn TTT =

)(min yxz )()()()()( tFtFtFtFtF +=
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),( min hMHh TTT =
),(min yxz = )()()()()( tFtFtFtFtF yxyxz ⋅−+=



Cellular system as a queuing network
Memoryless model (MacMillan, -ITC: 1991)

).exp()( ttf RRTR μμ −⋅=

TR= Cell residence time

RRTR

).exp()( ttf MMTM μμ −⋅=

TM= Call or Message holding time
)p()(f MMTM μμ

])(exp[)()exp()( tttf μμμμμμ +−+=−⋅=

TCh= Channel holding time

]).(exp[)().exp()( tttf MRMRCHCHTCH
μμμμμμ +−+=−⋅=
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New cell residence time Tn
A: starting point
B: ending point B

(From Hong, Rappaport -1986)

Trajectory
RA Req

φr

R

Random initial direction, uniformly distributed in the interval [0, 2π]

Random initial speed uniformly distributed in the interval [0 V ]
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Random initial speed, uniformly distributed in the interval [0, Vmax]



Cell residence time Tn
Hong Rappaport (1986)
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Handover cell residence time Th

BA: starting point
B: ending point

(From Hong, Rappaport -1986)

Trajectory

φ

A

Random initial direction, uniformly distributed in the interval [-π, π]

Random initial speed uniformly distributed in the interval [0 V ]
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Random initial speed, uniformly distributed in the interval [0, Vmax]



Cell residence time Th
F H R t 1986) B
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Cell - channel residence time Tc
A i i (F G i 1987)A: starting point (From Guerin, 1987)

Trajectory AA
Handoff 1

Change of
Velocity )(vfV

Handoff 2

g
direction 1

Reflection principles Change of
direction 2

Arbitrary initial point with direction uniformly distributed in [0, 2π]

Time between changes of directions: distribution

Change of direction, uniformly distributed in the interval [0, 2π]

t
T etf μμ −=)(
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Tf μ)(
This model has been considered as the foundation for a number of mobility models.



Cell residence time in square cells, Tsq

• In urban environments and for in-home networks, the irregular cell shape 
becomes more and more regular (shadowing effects, …) 

• The cell residence time in a square cells and in a rectangular cell has been 
evaluated in (Scheweigel, Zhao- 2002), (Scheweigel, - ITC:2003)

• Exponential approximation has been proposed• Exponential approximation has been proposed.

A: starting point
B: ending point

Rx

A
Rx

B

B: ending point

Ry
φ

Ry φ

B

Handover calls BNew calls
A
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Fitting distributions -i-

• Exponential distribution (Hong, Rappaport -1986)
E t l i l lth h t bl f ll b t– Extremely simple, although acceptable for macrocells, but 
not for micro and pico-cells
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Fitting distributions -ii-
• Generalized gamma (Zonoozi & Dassanayake -1997)

– Good enough for macrocells, but not for micro and picocells
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Fitting distributions -iii-

• “SOHYP” (Sum of hyper-exponentials) distribution 
(Olik Rappaport 1998)(Olik, Rappaport -1998)
– Quite simple, although acceptable for macrocells, but not for 

micro and picocellsmicro and picocells
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• Hyper-Erlang distributions (Fang & Chlamtac -1999)
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Handover area residence time -i-
(F Pl C 2002)

• A regular geometry was chosen in the modeling process
While in the handover area no change in the movement (speed

(From Pla,  Casares -2002):

– While in the handover area, no change in the movement (speed 
and direction) occurs.

Receiver

A: starting point
B: ending point

z threshold

R dRR ddd

θB
d

ϕ

ddd

ϕϕ ϕ
θHandover

threshold

A
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Handover area residence time -ii-
Z
V
ZTd =Moving distance and dwell time are related by 

)(ZfZDistribution of Z. A numerical version is obtained 

)(VfDistribution of V. A truncated Gaussian distribution )(VfV

R

d

dRR

d
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dd

dd
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ddd
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Handover area residence time -iii-
• Impact of overlap and speed distribution (Pla, Casares -2002):

fT (t)
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Impact of speed distributionImpact of overlap width



Handover area residence time -iv-
• Fitting procedure (Pla, Casares -2002):

– Generalized gamma distribution
(i l d th l l W ib ll ti l )(includes the gamma, lognormal, Weibull, as particular cases)

– Erlang –j,k
– Hyper Erlang –j,kHyper Erlang j,k
– Double exponential

Hyper Erlang-8-1    G = 0.012fT (t) Erlang-4-1 G = 0.030f (t)yp g
Double exponential G = 0.017
Gen. Gamma G = 0.029

0.05

0.075

d=0.1R

Erlang-3 G = 0.033
Exponential G = 0.111

fT (t)

0 05
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Mobility Model for Mobility Management
OUTLINE

• General aspects: scenarios, cells, ….
• Residence time and call holding times.

– Cell and handoff areas.
• MM in location management.g

– Tessellation of the plane.
– Random walk.

B i ti– Brownian motion.
– Gauss-Markov.

• Advanced synthetic mobility modelsy y
• Macroscopic vision. Transportation theory.

– Fluid flow models.
Gravity models– Gravity models.

– Rush hour versus busy hour.
– Flow, Speed and Density.
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Tessellation of the plane
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Delauney  Tessellation 

Location Points
Cell sites
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The Delauney triangulation, a dual model to Voronoi tessellation, is used 
as a (connected) graph of nearest neighbors (e.g. for routing purpose).



Delauney -Voronoi Tessellation
Location Points:Location Points:
Voronoi sites or
Voronoi pointsVoronoi points

Each site has a
Voronoi cell
A Voronoi cell is
a convex seta convex set

Centers of the
circumferences:

Voronoi edges

Voronoi nodes
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Delauney -Voronoi Tessellation 
Location Points:Location Points:
Voronoi sites or
Voronoi pointsVoronoi points

Each site has a
Voronoi cell
A Voronoi cell is
a convex seta convex set

Centers of the
circumferences:

Voronoi edges

Voronoi nodes
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Voronoi Tessellation Location Points 
C ll iCell sites: 
Voronoi sites or
Voronoi pointsVoronoi points

Each site has a
Voronoi cell
A Voronoi cell is
a convex set

Voronoi nodes

Voronoi edges

Voronoi nodes

If the blue points is a Poisson 
process we have a Poissong process we have a  Poisson-
Voronoi tessellation (PVT).
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Location Areas

• Each location area (LA) contains a group of 
neighboring cells
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Mosaic Graphs

(A): M
• Mosaic M:

(A) Ri f ll (A): M3– (A) Rings of cells 
around an initial 
element: a pointelement: a point

• Mosaic T:

(B): T2

• Mosaic T:
– (B) Rings of cells 

around an initialaround an initial 
element: a cell

• Location area residence time 
– If cell sojourn time is exponential: Phase Type distribution 
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Hexagonal scenario for MM
From Martínez, García, Casares - (2005, 2008)

• Directional movement parameter (α) values within [0,∞[
– 0 ≤ α < 1 : High probability of moving towards an inner ring or being 

roaming within the same ring

– α = 1 : Random walk mobility model
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– 1 < α < ∞: High probability of moving towards an outer ring



2-D conversion into 1-D

Cells are grouped by 
rings to obtain a 1D 
Markov chain that 
simplifies the model
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Memoryless mobility model -
3β
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1-D Brownian motion –i-
Brownian motion is a particular case of random walk ( Rose, Yates - 1997)

pq

1 – p - q

Drift velocity:

Δx

Δxq)(pv =

Δxp q] – q ) q ( – p ) p [ (D
2)(2112 ++=

Drift velocity:
Δt

q)(pv −=

Diffusion constant: 

D

vtx 2

1
⎟
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−
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p q]q ) q(p ) p[ (
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Dt
Dt

txptx e1),(   ;small  very ,For =ΔΔ
π

Probability density function:



2-D Brownian motion –ii-
2-D: Personal location areas, recalculated after every contact with the system               
(Rose, Yates - 1997)

C t t ith th tContact with the system
Personal Location area

Probability density function:

∞→Mwhen
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∞→Mwhen 



1-D Gauss-Markov
• Brownian motion can not represent the time correlation in 

mobile’s velocity.
• Gaussian – Markov mobility model affords such a 

limitation  (Liang, Haas -2003)

μβστ +=+= − ||)]()([ 2 tetvtvERvAutocorrelation function:

( g, )

1
2

1 1)1( −+− −+−= nnn wvv ασμααDiscrete Gauss-Markov process:

  et);      v(nv t-
n

Δ=Δ= βαwith:

and  {wn} uncorrelated Gaussian process with zero mean and unit variance, 
independent of {vn}
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How versatile is the Gauss-Markov?

μβστ +=+= − ||)]()([ 2 tetvtvERv
• Autocorrelation function:

μστ +=+= )]()([ etvtvERv

1
2

1 1)1( −+− −+−= nnn wvv ασμαα• Discrete Gauss-Markov 
process:

R d lk ith d ift

11 1)1(+ + nnn wvv ασμααprocess:

• Random walk with drift: ;or     ;0If ∞→→ βα
( )  ; 2

1  k     Rwv vnn μσμ =+= − ( )vnn

• Fluid flow with constant speed:  ;0or     ;1  If →→ βα

( )  ; 22
1  k     Rvv vnn μσ +== −
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Mobility Model for Mobility Management
OUTLINE

• General aspects: scenarios, cells, ….
• Residence time and call holding times.

– Cell and handoff areas.
• MM in location management.g

– Tessellation of the plane.
– Random walk.

B i ti– Brownian motion.
– Gauss-Markov.

• Advanced synthetic mobility modelsAdvanced synthetic mobility models
• Macroscopic vision. Transportation theory.

– Fluid flow models.
– Gravity models.
– Rush hour versus busy hour.
– Flow Speed and Density
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Flow, Speed and Density.



Advanced synthetic mobility models
• Hong & Rapaport’s model (1986), Pla & Casares’s model (2002), 

Scheweigel, - (2003), …. do not allow that the direction of the MT 
changes in the walk area.

• Guerin’s model (1986) and Zonoozi & Dassayanake’s model (1997) 
allow a random change of direction, anywhere, anytime. These 
models can be seen as a generalization of previous models.

• Basically, two types of mobility models have been used in ad-hoc 
scenarios VANET :scenarios, VANET, ..:

• Random Way Point (RWP)
• Random Direction (RD)• Random Direction  (RD)
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RWP and RD mobility models –i-
RWP• RWP:

P0, Θ1, D1,V1 P1 P4

P1, Θ2, D2,V2 P2

P Θ  D V P P

P2
4

. . . . . . . .

P2, Θ3, D3,V3 P3 P1

• RD: As an alternative to 
overcome deficiencies of the 
RWP model

P0 P3

P0, Θ1, T1,V1 P1

R fl i iP1, Θ2, T2,V2 P2

P2, Θ3, T3,V3 P3

Reflexion point

They can be extended  by considering 
i l b i i
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. . . . . . . .

P2, Θ3, T3,V3 P3 a pause interval between two consecutive trips



RWP and RD mobility models –ii-
• The Random Way Point Model suffers from its statistical 

properties. Node distribution does not stay constant on average 
during simulation time  With ongoing time, node distribution 
tends towards the center of the simulation area and the mean 
al e of the speed distrib tion decreases significantlvalue of the speed distribution decreases significantly

• In order to avoid this fatal behavior of the Random Waypoint 
Model the RD mobility model was developedModel, the RD mobility model was developed.
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Obstacle Mobility Model –i-
• The Random Way Point Model suffers from its statistical 

properties. Node distribution does not stay constant on average 
during simulation time  With ongoing time, node distribution 
tends towards the center of the simulation area and the mean 
al e of the speed distrib tion decreases significantlvalue of the speed distribution decreases significantly

I d t id thi f t l b h i f th R d W i t• In order to avoid this fatal behavior of the Random Waypoint 
Model, the RD mobility model was developed.

• But those models do not capture certain aspects of the reality, 
for instance: OBSTACLESfor instance: OBSTACLES 
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Obstacle Mobility Model
Corners of obstacles are sets of location points (not cell sites!)
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Obstacle Mobility Model
Location points (corners of obstacles)Location points (corners of obstacles)
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Obstacle Mobility Model
Location points (corners of obstacles)Location points (corners of obstacles)
Edges of the Voronoi diagram
Intersections of the Voronoi graph with the bordersIntersections of the Voronoi graph with the borders

D Th i f i i b h V i
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Doorways: The points of intersections between the Voronoi
graph and the obstacle boundaries



Obstacle Mobility Model

J d h (2003)Jardosh (2003)
MobiCom’s conference
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Voronoi-based MM for urban environment –i-
Zimmermann EWC’2005

VP 

Zimmermann,  EWC 2005

•First of all, building structures are defined based upon a plain simulation area. Each
building is uniquely defined by a given set of corner coordinates. In principle,

bit b ildi h th b li d Th d V i i tarbitrary building shapes can thus be realized. The corners are used as Voronoi points
for a first calculation of the Voronoi graph.
•Further interpolation points are used to get a finer structure of the Voronoi graph
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Voronoi-based MM for urban environment –ii-
Zimmermann EWC’2005Zimmermann,  EWC 2005

•A second Voronoi graph can be calculated based upon the merged structure between
initial building structure and the first Voronoi graph.
F th i t l ti i t d t t fi t t f th V i h•Further interpolation points are used to get a finer structure of the Voronoi graph
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Voronoi-based MM for urban environment –iii-
Zimmermann EWC’2005Zimmermann,  EWC 2005

•A second Voronoi graph can be calculated based upon the merged structure between
initial building structure and the first Voronoi graph.
F th i t l ti i t d t t fi t t f th V i h•Further interpolation points are used to get a finer structure of the Voronoi graph
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Obstacle Mobility Model
• Modeling a terrain

M t h• Movement graph
– Voronoi diagram

Ed f th b t l th V i i t ( l ti i t )• Edges of the obstacles are the Voronoi points (or location points)

• Rout selection
• Signal propagation model

– Free space
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Mobility Model for Mobility Management
OUTLINE

• General aspects: scenarios, cells, ….
• Residence time and call holding times.

– Cell and handoff areas.
• MM in location management.g

– Random walk.
– Brownian motion.

G M k– Gauss-Markov.
• Advanced synthetic mobility models
• Macroscopic vision Transportation theory• Macroscopic vision. Transportation theory.

– Fluid flow models.
– Gravity models.
– Rush hour versus busy hour.
– Flow, Speed and Density.
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Fluid flow models
Morales Villen-Altamirano -1987; Thomas Gilbert Mazziotto -1988)

β
v(x,y)

( )β
v(x,y)

Morales, Villen-Altamirano -1987; Thomas, Gilbert, Mazziotto -1988)

β vn(x,y)
r

β vn(x,y)

• Density σ(x y); Velocity normal to the edge v = v (x y)• Density σ(x, y);  Velocity normal to the edge vn = vn(x, y)
(uniformly distributed in (0,2π)

∫
/2

2/)(2/d)()(
π

ββ

)dl/2) (()dl()(h ∫∫

∫ ==
/2-

2/y)v(x,2/dy)cosv(x, y)(x,v
π

ππββn

y)dl/2y)v(x,(x,  y)dl(x,y)v(x,    h  n ∫∫ == πσσ

•If density and velocity are constant in the perimeter:
  h σ Lv

=
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If density and velocity are constant in the perimeter:  h  
π



Fluid flow versus Markov models
Perimeter: L
Area: A
D i  

R R R
R

• Individual behavior: We divide by the total number of users in the Area A

Density: σ 

A
LVE
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LVELVE
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Macroscopic level: Trajectories
• During a path from the home to the working place, a 

mobile will visit some geographical areas covered by 
several types of cells

Working place

H

Working place

Home
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Trajectories in a Manhatan like city

15/64 35/128 70/256 126/512 386/10245/321/16

29/128 93/256 256/512 638/1024 17/641/32

10/32 20/64 35/128 56/256 130/5124/161/8

15/64 35/128 70/256 126/512 386/10245/321/16

Working place6/16 10/32 15/64 21/128 37/2563/81/4

1/4 1/8 1/16 1/32 1/641/2

3/8 4/16 5/32 6/64 8/1282/41/2

1

Home

1/4 1/8 1/16 1/32 1/641/21
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Probability to go North p=0,5, to go East q=0,5



Gravity Models
• Transportation theory and fluid flow models can be useful when 

modeling location management schemes                               
(Markoulidakis 1997 Bejerano 2000; )(Markoulidakis -1997, Bejerano, -2000; )

• Attraction points i , j  population Pi, Pj

d

jijiji PPKT ,, =
Pii

• Example:  Newton’s gravitation law 2,
1

d
CK ji =

Pi
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Rush hour - Busy hour
Share of total traffic (vehicles, pedestrians, ..)
Teletraffic volume (telephone calls mainly, ..)

BUSY periods (hour)
RUSH periods (hour)

BUSY periods (hour)

0 2 4 6 8 10 12 14 16 18 20 22 240 2 4 6 8 10 12 14 16 18 20 22 24
Clock time (24 hours)
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There is no coincidence between RUSH HOURS and BUSY HOURS



Transportation theory –i-
• Framework for fundamental characteristics of traffic 

flow (A. May, 1990)

Traffic 
Ch i i

Microscopic
(i di id l i )

Macroscopic
( l b l b h i )Characteristics (individual units) (global behavior)

Flow Time headways Flow ratesFlow Time headways Flow rates

Speed Individual speeds Average speed

Density Distance headways Density rates
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Flows (macroscopic) –i –
• Flow rates ( or traffic volume) is the important macroscopic flow 

characteristic:
– Defined as the number of vehicles  passing a point in a given period of time 

(morning and evening commuter: Rush Hours)
– The single hour of the day with highest hourly volume: Peak HourThe single hour of the day with highest hourly volume: Peak Hour
– Four daily volume parameters are daily used:

– Average annual daily traffic (AADT)
– Average annual weekday traffic (AAWT)
– Average daily traffic (ADT)

A kd t ffi (AWT)– Average weekday traffic (AWT)
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Speed (macroscopic) –i –
• Speed is the second macroscopic parameter describing the state 

of a traffic stream:
– It is defined as the rate of motion in distance per unit.
– Travel time is the time taken to traverse a defined section of roadway.

t
dv =
t

• v = speed  (Km /hour)
• d = distance traversed.
• t = time to traverse distance dt  time to traverse distance d
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Traffic density (macroscopic) –i –
• Traffic density

Defined as the number of vehicles occupying a length– Defined as the number of vehicles occupying a length 
(typically 1 mile or 1 Km) of roadway or lane.

• Minimum: 0 vehicles /Km
• Maximum: (jam density): 100 -150 vehicles /Km

• Traffic density is very difficult to measure
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Flow = Speed . Density ?

• Flow, f  ( the number of vehicles  passing a point in a given period of time the 
di t t l d ti it)

? . densityspeedflow =

distance traveled per time unit).
• Speed, v  (the distance traveled per time unit).
• Traffic density, D (the number of vehicles occupying a length of roadway)Traffic density, D (the number of vehicles occupying a length of roadway)

DensityFlow Capacity

B A

Flow Capacity

A B

Critical
density A

B
B AA B

Critical
speed

SpeedSpeed
Critical
speed

Critical
density

Jam
density

Density
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Stable flow
Forced flow



Flow-Speed-Density for pedestrians
• Models for pedestrians are similar to those considered 

for cars Although there are some relevant differences:for cars. Although, there are some relevant differences:
– The values and units for speed, flow and density are different

The gaps between persons respect their speed are different from– The gaps between persons respect their speed are different from 
cars

– There is not an integer number of lanes (so clear defined as inThere is not an integer number of lanes (so clear defined as in 
roads)

– Pedestrians stream can be compressed in the transversePedestrians stream can be compressed in the transverse 
dimension

?densityspeedflow = ? . densityspeedflow =
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Time headways (microscopic) -i-
• Time headways

– Defined as the elapsed time between the arrival of pairs of p p
vehicles (pedestrian, rail, water, air transportation, ..)

– Very important for safety conditions, level of service, driver 
behavior.

– The average time headway in a traffic lane can be directly related 

Kf =

to the density of the lane

f 3600
=

h
f =

h
fhour =

• f = flow rate (vehicles per hour: f hour)
• h = average time headway (seconds per vehicle)
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h  average time headway (seconds per vehicle)



Time headways (microscopic) –ii-
• Three headways distributions are considered for three 

flow level conditions

Very low flow level conditions: Exponential distribution:
tetfTHW

μμ −=)(

High flow level conditions: Constant distribution:
1 )1()(
μ

δ −= ttfTHW

Intermediate flow level conditions: Distribution with fitting parameters
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Time headways (microscopic) –iii-

• Intermediate flow level conditions: distribution 
with fitting parameters:with fitting parameters:
– Pearson type III distribution

G– Gamma
– Erlang

if d i i l– Sifted negative exponential
– ….

⎞⎛λ

Pearson type III distribution

( ) ⎟
⎠
⎞⎜

⎝
⎛

−
−−−−

Γ
=

αλ
αλλ tekt

k
tf IIIPR

1][
)(

)(
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Time headways (microscopic) -iv-
• Characterization of platoons (Alpha, Neuts -1995):

Based on those a Markovian Arrival Process (MAP) is built:

CCC +=MAP process: C stochastic matrix

– Based on those, a Markovian Arrival Process (MAP) is built:

10 CCC +=MAP process: C stochastic matrix     

• Transitions of C do NOT involve the arrival of a vehicle• Transitions of C0 do NOT involve the arrival of a vehicle.

• Transitions of C1 involve the arrival of a vehicle1

MM for MMHET-NETs’10 72/77



Time headways (microscopic) -v-
h i i l ( l h )• Characterization of platoons (Alpha, Neuts -1995):

– Inter-platoon headway characterized by a discrete Phase type 
( ) di ib i(PH) distributions.

– Intra-platoon headway characterized by a discrete Phase type 
(PH) di t ib ti

)]1(),1([ Tα

)]2()2([ T

⎥
⎤

⎢
⎡ ⊗

=⎥
⎤

⎢
⎡

=
)1()2()2()2(

;
0)2( 00

0
10

αδαδ TT
C

T
C

(PH) distribution. )]2(),2([ Tα

⎥
⎦

⎢
⎣ ⊗⊗⎥

⎦
⎢
⎣ ⊗ )1()1()1()1(

         ;
)1(0 00010 αα TDTD

C
TI

C

Kronecker product:⊗ δ0 +δe =1; D0+De=e

Is the probability of a platoon consisting of a single vehicle0δ
)2(T Ph t iti d i i t l t i l)2(T Phase transition during an inter-platoon arrival

)1(TI ⊗ Phase transition during an inter arrival time within a platoon
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Spacing headways (microscopic) -i-
• Spacing headways, dd

– Defined as the distance between successive vehicles in a traffic 
lane elapsed. Also can be applied to pedestrian, rail, water, air 
transportation, ..

– Spacing or distance headways: 7- 10 m/vehicles.
– The average spacing in a traffic lane can be directly related to 

K

the density of the lane

D
Kdd =

• dd = average spacing or distance headways
• D = density vehicles/Km/lane
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• D = density, vehicles/Km/lane



Speed (microscopic) –i –
• Speed in high ways, main roads

Uniform traffic highway– Uniform traffic highway
• Constant car density
• Constant car flow
• Car speed: truncated Gaussian distribution

fv(v)

v (km/h)60 160
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Some conclusions on MM for MM
• Main Conclusions:

1. Microscopic vision mainly for Call and Handover Management.
– Good characterization of area (cell, handover) residence time.
– Good characterization of microscopic traffic transportation 

(handover batch arrival)

2. Macroscopic vision mainly for Location Management.
– Macroscopic vision of traffic transportation (Gravity models) 
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Mobility Models  for Mobility Management

• Many thanks indeed for your attention
C t ti ?• Comments or questions? 

THE END
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