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motivation

fairness is an important objective in communication
network design

= yet not commonly understood

example applications
= routing of elastic traffic in the Internet
= resource utilization or resource distribution
= design of resilient networks

there are different notions of fairness
= MMF — max-min fairness
= PF — proportional fairness

optimization methods for problems involving fairness
are hardly known to researchers in telecommunications
= MMF is frequently ,re-invented” (often in a wrong way)
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purpose of the presentation (and outline)

=z introduce the notion of MMF

show applications of MMF to routing optimization

present basic optimization algorithms for MMF

show example results

discuss selected extensions




lexicographically maximal solution (priority of customers)

give as much goods as possible to the most important
customer (until he cannot accept more, or the goods are
exhausted)

dos the same for the second most important:client, andi so on
example: distribute; 1 liter off beer




max-min fairness: beer distribution

= give as much goods as possible equally to all, until
m ONEe customer cannot accept more or
s the goods are exhausted

if there are more goods left, distribute them eqgually to those'who are
still able to receive them

and so on, untill either no one cam accept more, or the.goods are
exhausted

example of ar MME solution:
distribute 1 liter of beer




routing problem for a simple network

s two links in series — each of capacity 10 (e.g., 10 Mbps)
s three elastic demands (flows) eager to get as much bandwidth as possible
throughput

GRS | ES—| | E—
X, X
v

(priority 3,2,1): X; =0, X, = X5 = 100 (20)
= Maximize X;, them maximize X, with fixed X,
finally: maximize X; with fixed X5 and X5
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; X, =X, =X;=5 (15)
s maximize the worst flow (next worst flow, ...)




routing problem for a simple network (modified)

capacity C; = 15 capacity C, = 10

L lce——
X, X3

X, =0, % =15, X = 10, (25)

X, =5, %, =10, X; = (20)




routing problem

C. — capacity of link e, e € E

three connections (d = 1,2,3) corresponding
to three fixed paths from s to t,, t,, t;
assignm bandwidth X, X5, X; respectively

to paths P, P5, P5in a

B Dgecpsy Xa=C., €€ E ' (capacity constraint)
s forexample: X; + X, <C;, X; + X5 <C,




lexmax routing — solution

C,=15 C,=10 (bottleneck links)
the rest of links have large capacity
the amount of goods (bandwdth) is infinite

s Importance off connections: 3, 2, 1

solution: Q Q @

step 1: X5 =10 (link 2 gets saturated)

step 2: X, =15 (link 1 gets saturated)

step 3: X; =0 (link 1 and link 2 are saturated)
finally: X;=0 X, =15 X;=10




MMF routing - solution

C,=10 C,=15 (bottleneck links)
the rest of links have large capacity
the amount of goods (bandwdth) is infinite

solution:

= step 1: X=X, =X;=5 (link 2 gets saturated)
= step 2: X, =10 (link 1 gets saturated)
m finally: Xi=5 X, =10 X5=5




algorithm (waterfilling) (Bertsekas & Gallager ,,Data Networks")

n.=|{deD:ecP|, ecE (number of paths through a link)

Step 0: X =X,X5,...,.%) :=0; k:=0.
Step 1 kK :=k+1
set t=min,._g Cs/ N,
foralle e EputC, :=C, -t -n,
for all d e D put X, i= Xy + t

remove all saturated! links and all connections
through the removed links.

Stop i there are no connections left;
otherwise go to Step 1.




basic notations: lexicographical order

8 V= (Yi,Yo -/ Ym)r Z = (24,25,-.-,Z7) VECtOrs in R™ (m-vectors)

s lexicographical order:

(Y]_IYZI"'IYm) < lex (Z]_IZZI"'IZm)

ifft there exists 0 < k < m/'such that

" Y =Z for j=1,2,..., K
® Vi1 < Zyaq

the rest of entries (j=k+2,k+3,...,m) do not matter!

examples: (1,2, 1000) <., (1,3,1) (1,100, 1000) <., (2,2,2)




basic notations: MMF order

- y= (YIIYZI"'IYm)I = (Z]_IZZI"'IZm)

s MME order:

(Y]_IYZI"'Iym) < MME (211221---Izm)

i

[ (Y]_IYZI"'Iym) ] < Iex[ (Z]_IZZI"'IZm) ]

where [ X | denotes vector x sorted In non-decreasing order

examples: (1,2,2) <. (1,3,1) (1,2,3) <, (1,3,3)

(1,3,1) <ywe (1,2,2) ( because (1,1,3) <, (1,2,2) )
(1,2,3) <ume (1,3,3) ( already sorted )




three problems
m Xc R solution space

m X = (Xq,%,...,X,) N-vector, x e X (variables)
n (%) = (F,00,5,0¢),....f()) , f;: X >R (criteria)

Find X0 € X such that:

LEXMAX: f(x9) is lexicografically maximal over x e X

MMF: f(x9%) is maximal in the MMF sense over x e X




general lexmax problem

Find x° lexicographically maximal in X with respect to the criterion function f.

m find X% e X

m such that

VX eX, f(xX) <, fi(x0)

lexmax f(x), x e X




algorithm for lexmax — steps

Step 0:

Step 1: Selve the following optimization problem_£A,
(with £,°69,...,t _,° fixed)

X), X X

Denete the resulting optimal solution by x°
and put £° = f(x%).

Step 2: If k = m then stop (X2 is the optimal solution);
Otherwise put ki= k41 and go to Step 1.

Remark: If X is convex and fi(x) are concave then each A is a convex problem.
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general MMF problem

m Find x% e X

such that ¥ x e X, [ f00) 1 < o [ F) 1.

(find x° lexicographically maximal in X
with respect to the sorted criterion function f)

The problem is called convex when X is convex and all f; are concave.

Convex MME problems can be treated sequentially in a way: that'is'not much more
complex than for lexmax.

For non-convex problems the procedure is more complex.




MMF algorithm for convex problems — notation

s M={1,2,..m} index set of the criteria

s BcM set for which the optimal criteria
are already computed

= t8=(tB: jecB)  vector of optimal criteria (with|B/elements)
= BB=M\B set for whichi the optimal criteria are tosbe/compted

Problem P(B,t5) convex

s variables: X, t
s constants: B, t®

maximize t

subject to

m fi(Xx) >t j € B° (criteria that can be increased)
m (%) =t° j € B (these criteria are fixed)

m X e X, teR.




algorithm — steps

Step 0: B := @ and t® := &.
Step 1: If B = M, then STOP (x° and [tB] = [f (x°)] are optimal).
Else, solve problem P (B,t®) and denote the resulting
solution by (X2,t%).
(note that P(Z,D) vyields the first value in the final solution [f (x°)])

Step 2: For'each index k e B suchi that fi(x%) = t° solve the lifting test
/(B, 8,9 k):

maximize fi(x)

subject to

m (X)) =t j e B"\{k}
_ J-(X) = th ] e B

m X e X.

Iff £, (x°) = t° for eptimal x° selving 7 (B,t5,t° k)
then B := B U {k}, t.5:=t°.

Step 3: Go to Step 1.




illustration

s example with 3 criteria to be lifted inla MME way
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remarks

the algorithm works due to convexity: i each criterion can be
lifted individually: then they all can be lifted"simultaneously!

this property is not present in non-convex problems and: this
makes; them difficult

excessive number of tests 7 (B,t5,t% k) to be solved

several ways to effectively: overcome this difificulty
m Use of duallvariables
s, making one modified test in each step




formulation of the convex routing problem

Given
= link capacities ( C,)
s lists of allowable paths
for realizing demands ( Py, Py /eevr Pymay)

Find
n flows assigned to the demand paths ( Xy, )
(now: pathsi are subject to optimization)

Such that
s l0oads of the links doinot exceed their capacity
s flows are assigned to demands in a MMFE way:

to maximize lexicographically the sorted
total allocation vector X = (X, X,,.--,Xp)




MMF convex routing problem

|| IexmaX [ X1, X2, ree g XD]
| Xd = Xdl + Xd2 + ... + de(d) / d = 1,2,...,D
] Zd Zp Sededp S Ce '/ e = 1,2,...,E

= Variables are continueus and Nnon-negative

Segp = 1 if € € Py




numerical results: 8 steps of the algorithm

optimal total allocation
vector X = (X, X5,...,Xp)

V=12 nodes
E=18 links
D=66 demands

bandwidth

iteration

demand




informal formulation of the routing problem with
single-paths (non-convex, NP - complete)

select exactly one, path j(d) for each demand d

allocate entire flow X, to path P (out:of Py;,Py,...,Pamiay)
S that the capacity €. of neilink €/is exceeded

andi the vector [ (X3, X5, ... ,Xp) ] 15 lexicographically: maximal

Remarks

= as we already know when paths j(d) are given and fixed, the
problem is easy (waterfilling)

= the difficulty of the problem lies in the path selection




non-convex formulation of the problem (MIP)

Constants
= link capacities ( C,)
= A (large enoughi constant)
m lists off allowable paths for realizing demands ( Pyy, Py, /- Py )

\Variables
s flows assigned to the demands paths ( X, )
m Dbinary variables associated with flows (" Uy, )

Such that
Xgp < AUy, d=1,2,..,D, p=1,2,....m(d)
2 Uy = 1 d=1,2,...,.D
i) Lo Do = Oy 2= B
total flows (Xy=Xg;+XgpF .-+ Xym(a)) are assigned to demands in the
MME way:

to maximize lexicographically the sorted
total allocation vector X = (X;,X,,...,Xp)




example

Previous algorithms fail for non-convex X.

Example: twor demands between two nodes with.twerpaths
of capacity: 1 and 2, respectively.

When we solve for thefirst MME element we get (X, X)) = (1, 1).

Tihe bloecking tests will indicate that beth criteria can be
Improved.

They cannoet, however, be improved

simultaneously.

optimal solution:
(X1, X5) = (1,2) or (X, X;) = (2,1)

( in the bifurcated case: (1.5,1.5) )




transformation of the general problem to linear objective

X < Rn a set in n-dimensionall Euclidian space
X = (X1,%5,-.-,%,) N-vector
n (%) = (F,00,500,--, (X)) i £ X = Riscalar functions

lexmax [f(x)] for x e X

V= (VNG e Yen) IMEVECLON
Z & R (Wex)) e Z il

m X e X

m Yy s fj(X), =152, m

lexmax [yl for'(y,x) & Z

optimal x° are the same in both problems and y° = f(x°)




cumulated criteria

n [y]=r
m Ry =215 (I

lexmax r over Z

IS eguivalent to

lexmax R over Z




cumulated criteria - derivation of the solution

n [yl=r
n Re=201, kN

lexmax R over Z

R, cam be expressed as fiollows (for aifixed K):

Re= min X, Vil
subject to
2 =K
O<u,=<1 j=1,2,....m

continuous variables: u;, j=1,2,...,k

LP for fixed'y, but non-linear for variable y.




cumulated criteria - derivation of the solution

LP for fixed y, but non-linear for variable y.

But taking the dual gives an LP (for a fixed k):

max  kn - > d;

subject to
dg= I - Y
dy= 0

continuous variables:




cumulated criteria - solution

n [yl =
m Ry =215 (F;

lexmax R over Z

lexmax R over Z | can be expressed as follows:

lexmax (r1 = Zj d1j 7 2I’2 - Zj d2j g wee y MG = Zj dmj)

subject to (y,x) € Z
ko Z rk = yJ j, k — 1,2,...,m
dkj > O j, k — 1,2,...,m

Can be solved seguentially, for each k=1,2,...,m.




Sequential algorithm — steps

Step 0:

Step 1: Solve the program

P, i | max K = di;

subject tor (V%) € Z
R <= X d; =1,2,..., k-1
diy = = Y; j=1,2,....m, i=1,2,...,K
d; =0 j=1,2,....m,i=1,2,...,K

and denote its optimal selution by (x°,y° R.2).

Step 2: If k = m then stop (x%,y° is the optimal solution).
Otherwise put k:= k+1 and go to Step 1.




Computation times [sec] for single path allocation

Cumulated criteria
Direct approach based on explicit formulations (for each step of the
sequential process)

Nilsson, P.: Fairness in communication and computer network
design, PhD thesis, Lund University, 2006.

#links #paths direct cumulated
8 0.81 0.47
12 1.12 1.37
12 10.1 4.71
13 16.4 21.1
18 1622 328
18 1613 327
19 1920 107
6 0.42 0.10
12 1.15 13.1
17 26.7 29.0

WIWIWINININDINDINININ




Remarks

Cumulated approach is a general approach to
resolving non-convex MMF problems

Cumulated approach adds no difficulty to the
resolution scheme with respect to one-criterion

versions of the original problem

Cumulated approach performs better than the direct
approach

» this suggests effectiveness of the cumulated approach in the
general case




Other important problems involving MMF

= Maximization of unused capacity
= Introducing resilience to failures in non-protected networks

= Dimensioning of resilient networks




maximization of unused capacity

max Y
| Xdl -+ Xd2+ ul -+ de(d) — hd, d - 1,2,...,D
B D2, 0¥y T Y =G, =12, E
m Variables are continuous and non-negative

This s the first step of the MME problem given
below. Many: people considered! that: first step
and did net know! how: tercontinue!

correct MME formulation:

| |exmaX [ Y1, Y2, ey YE]

|| XCI]. += XCI2+ vas F de(d) — hd’ d — 1,2,...,D

8 Yy Y, SegXep + Ye<Cop €=1,2,

= Variables are continuous and non-negative




Conclusions

= MMF is useful in network design
= routing problems (for elastic traffic)
m unsed capacity maximization
m protection problem
= Mmany others

= Convex MMF problems can be effectively solved through a

sequential procedure involving a master problem and lifting
tests

There is a way to effectively incorporate MMF into non-convex
problems, without increasing their complexity (only continuous
variables and linear constraints added)

= e.g., bandwidth allocation problem involving single paths




more in:

D. Nace, M. Pioro: Max-min fairness and its applications to routing and
load-balancing in communication networks — a tutorial, JEEE
Communications Surveys and Tutorials, vol.10, no.4, pp.5-17, 2008

W. Ogryczak, M. Pioro, A. Tomaszewski: Telecommunications network
design and max-min optimization problem, Journal of
Telecommunications and Information Technology, No.3, 2005

M. Pioro, D. Medhi: Routing, flow, and capacity design in communication
and computer networks (chapters 8 and 13), Morgan-Kaufmann

(Elsevier), 2004

Thank you!



protection of a network

Given:
= link capacities C;, G,,..., Cc
= realized demand velumes: hy, hy,..., hp

Problem

= for each link divide its capacity C, inte working
capacity: W, and protection capacity Y, so that insthe
case of failure of any: single link g

s Its working capacity W, can be restored (sing
protection capacities Y, (e # g))

= demand velumes thy, thy ..., thp cani be realized
In‘working capacities\We (e = 1,2,...,E)

m (IS maximized

m the above problem is the first step in the MME problem

lexmax [ t, &, ... , &5 |

demand volumes t;h,, th, ,..., t;hy are realized in working
capacities W, (e = 1,2,...,E)

working capacity W. of any link g can be restored using protection
capacities Y, (e # g%
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routing problem for a simple network

s two links in series — each of capacity 10 (e.g., 10 Mbps)
s three elastic demands (flows) eager to get as much bandwidth as possible

throughput

4
; X; = 3.33, X, = X5 = 6.66 (16.66)
s maximize ( log X; + log X +log X; ) with respect to'capacity
constraints

A

log x — utility function maximize f(x) = log x + 2log (1-x)

//i




routing problem for a simple network (modified)

capacity C; = 15 capacity C, = 10

L lce——
X, X3

(priority 3,2,1): X; = 0, X, = 15, X; = 10 | (25)
X; =5 X, = 10, X3 @40)

X, =24, XK= 11, X; =60 (21)




PF routing — solution

C,=15 C,=10 (bottleneck links)
the rest of links have large capacity
the amount of goods (bandwdth) is infinite

s Maximize log| X; + log X5 + log| X5

solution (standard convex optimization problem):
m ;24 X, =211 X;= 6




general PF problem

s maximize log f,(x) + log f5(x) + ... + log (%)

m over X e X

The problemis convex when X is convex and each log) f,(x) is concave
(e.g., when fi(x) are linear or concave).




utility function

s UX) =r X0 /(1 - @)

s throughput maximization: o = 0, U(X) = r X
s MME: a0 —> o
s PE: o — 1, UCX) =r log X

A

U(x) - utility function

//i




