On the notion of max-min fairness and its applications to routing optimization

Michał/Pióro

Institute of Telecommunications Warsaw University of Technology (Poland)

Department of Electrical and Information Technology Lund University (Sweden)

HET-NETs 2010, Zakopane, Poland

motivation

fairness is an important objective in communication network design

yet not commonly understood

example applications

- routing of elastic traffic in the Internet
- resource utilization or resource distribution
- design of resilient networks

there are different notions of fairness

- MMF max-min fairness
- PF proportional fairness

 optimization methods for problems involving fairness are hardly known to researchers in telecommunications
 MMF is frequently "re-invented" (often in a wrong way) purpose of the presentation (and outline)

- Introduce the notion of MMF
- show applications of MMF to routing optimization
- present basic optimization algorithms for MMF
- show example results
- discuss selected extensions

lexicographically maximal solution (priority of customers)

 give as much goods as possible to the most important customer (until he cannot accept more, or the goods are exhausted)

2

do the same for the second most important client, and so on

1

50.0 cl

example: distribute 1 liter of beer

12.5 cl

3

max-min fairness: beer distribution

- give as much goods as possible equally to all, until
 - one customer cannot accept more or
 - the goods are exhausted
- if there are more goods left, distribute them equally to those who are still able to receive them

37.5 cl

- and so on, until either no one can accept more, or the goods are exhausted
- example of a MMF solution: distribute 1 liter of beer

25 cl

routing problem for a simple network

- two links in series each of capacity 10 (e.g., 10 Mbps)
- three elastic demands (flows) eager to get as much bandwidth as possible

routing problem for a simple network (modified)

routing problem

 C_{e} – capacity of link e, e \in E

three connections (d = 1,2,3) corresponding to three fixed paths from s to t_1 , t_2 , t_3

assign bandwidth X₁, X₂, X₃ respectively to paths P_1 , P_2 , P_3 in a fair way

elastic traffic: the amount of goods accepted by a connection is potentially infinite

 P_3

P

P₂

lexmax routing – solution

 $C_1 = 15$ $C_2 = 10$ (bottleneck links) the rest of links have large capacity the amount of goods (bandwdth) is infinite

- $\bullet X_1 + X_2 \le 15$
- $X_1 + X_3 \le 10$
- importance of connections: 3, 2, 1

solution:

step 1: X₃ = 10 (link 2 gets saturated)
step 2: X₂ = 15 (link 1 gets saturated)
step 3: X₁ = 0 (link 1 and link 2 are saturated)
finally: X₁ = 0 X₂ = 15 X₃ = 10

Ρ

MMF routing - solution

 $C_1 = 10$ $C_2 = 15$ (bottleneck links) the rest of links have large capacity the amount of goods (bandwdth) is infinite

• $X_1 + X_2 \le 15$ • $X_1 + X_3 \le 10$

solution:step 1: $X_1 = X_2 = X_3 = 5$ (link 2 gets saturated)step 2: $X_2 = 10$ (link 1 gets saturated)finally: $X_1 = 5$ $X_2 = 10$ $X_3 = 5$

algorithm (waterfilling)

(Bertsekas & Gallager "Data Networks")

 $n_e = |\{d \in D: e \in P_d\}|, e \in E$ (number of paths through a link)

Step 0:
$$X = (X_1, X_2, ..., X_D) := 0;$$
 $K := 0.$ Step 1: $k := k+1$ set $t = \min_{e \in E} C_e / n_e$ for all $e \in E$ put $C_e := C_e - t \cdot n_e$ for all $d \in D$ put $X_d := X_d + t$ remove all saturated links and all connectionsthrough the removed links.Step 2:Stop if there are no connections left;
otherwise go to Step 1.

C_e n_e

Not so simple in the general case!

basic notations: lexicographical order

• $y = (y_1, y_2, ..., y_m), z = (z_1, z_2, ..., z_m)$ vectors in \mathbb{R}^m (m-vectors)

lexicographical order:

$$(y_1, y_2, ..., y_m) <_{\text{lex}} (z_1, z_2, ..., z_m)$$

iff there exists $0 \le k < m$ such that

the rest of entries (j=k+2,k+3,...,m) do not matter!

examples: $(1, 2, 1000) <_{lex} (1, 3, 1)$ $(1, 100, 1000) <_{lex} (2, 2, 2)$

basic notations: MMF order

•
$$y = (y_1, y_2, ..., y_m), z = (z_1, z_2, ..., z_m)$$

MMF order:

$$(y_1, y_2, ..., y_m) < _{MMF} (z_1, z_2, ..., z_m)$$

 $[(y_1, y_2, ..., y_m)] <_{\text{lex}} [(z_1, z_2, ..., z_m)]$

where [x] denotes vector x sorted in non-decreasing order

examples: $(1,2,2) <_{lex} (1,3,1)$

 $(1,3,1) <_{MMF} (1,2,2)$ $(1,2,3) <_{MMF} (1,3,3)$ (1,2,3) <_{lex} (1,3,3)

(because (1,1,3) < lex (1,2,2)) (already sorted)

three problems

X ⊆ Rⁿ solution space
x = (x₁,x₂,...,x_n) n-vector, x ∈ X
f(x) = (f₁(x),f₂(x),...,f_m(x)), f_j : X → R

(variables) (criteria)

Find $x^0 \in X$ such that:

LEXMAX: $f(x^0)$ is lexicografically maximal over $x \in X$

MMF: $f(x^0)$ is maximal in the MMF sense over $x \in X$

general lexmax problem

Find x⁰ lexicographically maximal in X with respect to the criterion function f.

algorithm for lexmax – steps

Step 0: k:= 1.

Step 1:

Solve the following optimization problem P_k (with $t_1^0, t_2^0, ..., t_{k-1}^0$ fixed)

max { $f_k(x)$, $x \in X$, $t_j^0 = f_j(x)$, j=1,2,...,k-1}.

Denote the resulting optimal solution by x^0 and put $t_k^0 = f(x^0)$.

Step 2: If k = m then stop (x^0 is the optimal solution); Otherwise put k := k+1 and go to Step 1.

Remark: If X is convex and $f_i(x)$ are concave then each P_k is a convex problem.

general MMF problem

• Find
$$x^0 \in X$$

■ such that $\forall x \in X$, $[f(x)] \leq_{lex} [f(x^0)]$.

(find x⁰ lexicographically maximal in X with respect to the <u>sorted</u> criterion function f)

- The problem is called convex when X is convex and all f_i are concave.
- Convex MMF problems can be treated sequentially in a way that is not much more complex than for lexmax.
- For non-convex problems the procedure is more complex.

MMF algorithm for convex problems – notation

algorithm – steps

Step 0: B := \varnothing and t^B := \varnothing . Step 1: If B = M, then STOP (x^0 and $[t^B] = [f(x^0)]$ are optimal). Else, solve problem $P(B,t^B)$ and denote the resulting solution by (x^0, t^0) . (note that $P(\emptyset, \emptyset)$) yields the first value in the final solution [f(x⁰)]) Step 2: For each index $k \in B'$ such that $f_k(x^0) = t^0$ solve the lifting test $7(B,t^B,t^0,k)$: maximize $f_{k}(x)$ subject to $f_j(x) \ge t^0 \qquad j \in B' \setminus \{k\}$ $f_i(x) = t_i^B \qquad j \in B$ $\bullet f_i(x) = t_i^B$ $\blacksquare X \in X.$ If $f_k(x^0) = t^0$ for optimal x^0 solving $\mathcal{T}(B, t^B, t^0, k)$ then B := B \cup {k}, t_k^B := t⁰.

Step 3: Go to Step 1.

example with 3 criteria to be lifted in a MMF way

remarks

- the algorithm works due to convexity: if each criterion can be lifted individually then they all can be lifted simultaneously!
- this property is not present in non-convex problems and this makes them difficult
- excessive number of tests T(B,t^B,t⁰,k) to be solved
- several ways to effectively overcome this difficulty
 - use of dual variables
 - making one modified test in each step

formulation of the convex routing problem

Given

- \blacksquare link capacities ($\rm C_{e}$)
- lists of allowable paths for realizing demands (P_{d1}, P_{d2},..., P_{dm(d)})

Find

 flows assigned to the demand paths (x_{dp}) (now paths are subject to optimization)

Such that

- loads of the links do not exceed their capacity
- flows are assigned to demands in a MMF way:

to maximize lexicographically the sorted total allocation vector $X = (X_1, X_2, ..., X_D)$

Pa

MMF convex routing problem

- lexmax [X₁, X₂, ..., X_D]
 - $X_d = X_{d1} + X_{d2} + ... + X_{dm(d)}$, d = 1, 2, ..., D
 - $\sum_{d} \sum_{p} \delta_{edp} X_{dp} \leq C_{e}, e = 1, 2, \dots, E$
 - variables are continuous and non-negative

Waterfilling algorithms does not work so we use the general MMF algorithm for convex MMF problems.

$$\delta_{edp} = 1$$
 if $e \in P_{dp}$

Par

numerical results: 8 steps of the algorithm

informal formulation of the routing problem with single-paths (non-convex, *NP* - complete)

select exactly one path j(d) for each demand d

- allocate entire flow X_d to path $P_{dj(d)}$ (out of $P_{d1}, P_{d2}, \dots, P_{dm(d)}$)
- so that the capacity C_e of no link e is exceeded
- and the vector $[(X_1, X_2, \dots, X_D)]$ is lexicographically maximal

Remarks

- as we already know when paths j(d) are given and fixed, the problem is easy (waterfilling)
- the difficulty of the problem lies in the path selection

non-convex formulation of the problem (MIP)

Constants

- link capacities (C_a)
- $\blacksquare \Delta$ (large enough constant)
- lists of allowable paths for realizing demands (P_{d1}, P_{d2},..., P_{dm(d)})

Variables

- flows assigned to the demands paths (x_{dp})
- binary variables associated with flows (u_{dp})

Such that

- $\begin{array}{ll} X_{dp} \leq \Delta U_{dp} & d=1,2,...,D, \ p=1,2,...,m(d) \\ \Sigma_{p} \ U_{dp} = 1 & d=1,2,...,D \\ \Sigma_{d} \ \sum_{p} \ \delta_{edp} X_{dp} \leq C_{e} & e=1,2,...,E \end{array}$
- total flows $(X_d = x_{d1} + x_{d2} + ... + x_{dm(d)})$ are assigned to demands in the MMF way:

to maximize lexicographically the sorted total allocation vector $X = (X_1, X_2, ..., X_D)$

example

Previous algorithms fail for non-convex X.

Example: two demands between two nodes with two paths of capacity 1 and 2, respectively.

When we solve for the first MMF element we get $(X_1, X_2) = (1, 1)$. The blocking tests will indicate that both criteria can be improved. They cannot, however, be improved simultaneously.

 $C_1 = 1$

optimal solution: $(X_1, X_2) = (1, 2) \text{ or } (X_1, X_2) = (2, 1)$

(in the bifurcated case: (1.5,1.5))

 $C_{2}=2$

transformation of the general problem to linear objective

 $\blacksquare X \subset \mathbb{R}^n$ a set in n-dimensional Euclidian space • $x = (x_1, x_2, ..., x_n)$ n-vector • $f(x) = (f_1(x), f_2(x), \dots, f_m(x))$ $f_i : X \rightarrow R$ scalar functions lexmax [f(x)] for $x \in X$ • $y = (y_1, y_2, ..., y_m)$ m-vector $\blacksquare Z \subseteq \mathbb{R}^{m+n}$: $(y_{I}X) \in Z$ iff $\square X \in X$ • $y_i \le f_i(x), j=1,2,...,m$ lexmax [y] for $(y,x) \in Z$ optimal x^0 are the same in both problems and $y^0 = f(x^0)$ 28

cumulated criteria

cumulated criteria - derivation of the solution

cumulated criteria - derivation of the solution

LP for fixed y, but non-linear for variable y.

But taking the dual gives an LP (for a fixed k):

$$\begin{split} \mathsf{R}_k &= \max \quad kr_k - \sum_j d_{kj} \\ & \textbf{subject to} \\ & d_{kj} \geq r_k - y_j \\ & d_{kj} \geq 0 \end{split} \qquad \begin{array}{l} j = 1, 2, \dots, m \\ j = 1, 2, \dots, m \end{array} \\ & \text{continuous variables:} \qquad \begin{array}{l} r_k \\ & d_{kj} \end{array} \qquad \begin{array}{l} j = 1, 2, \dots, m \\ & j = 1, 2, \dots, m \end{array} \end{split}$$

cumulated criteria - solution

Can be solved sequentially, for each k=1,2,...,m.

Sequential algorithm – steps Step 0: k:= 1. Solve the program Step 1: $\begin{array}{ll} \max & kr_k - \sum_j d_{kj} \\ \text{subject to} & (y,x) \in Z \end{array}$ P_k : max i=1,2,...,k-1 j=1,2,...,m, i=1,2,...,k j=1,2,...,k, i=1,2,...,k $R_i^0 \leq ir_i - \sum_i d_{ii}$ $d_{ii} \ge r_i - y_i$ $d_{ii} \geq 0$ and denote its optimal solution by (x^0, y^0, R_k^0) . If k = m then stop (x^0, y^0) is the optimal solution. Otherwise put k := k+1 and go to Step 1. Step 2:

Computation times [sec] for single path allocation

Cumulated criteria Direct approach based on explicit formulations (for each step of the sequential process)

#nodes	#links	#paths	direct	cumulated
5	8	2	0,81	0.47
6	12	2	1,12	1.37
7	12	2	10.1	4.71
8	13	2	16.4	21.1
9	18	2	1622	328
10	18	2	1613	327
11	19	2	1920	107
4	6	3	0.42	0.10
6	12	3	1.15	13.1
7	17	3	26.7	29.0

Nilsson, P.: *Fairness in communication and computer network design*, PhD thesis, Lund University, 2006.

Remarks

Cumulated approach is a general approach to resolving non-convex MMF problems

Cumulated approach adds no difficulty to the resolution scheme with respect to one-criterion versions of the original problem

Cumulated approach performs better than the direct approach

this suggests effectiveness of the cumulated approach in the general case

Other important problems involving MMF

- Maximization of unused capacity
- Introducing resilience to failures in non-protected networks
- Dimensioning of resilient networks

maximization of unused capacity

max Y

- $x_{d1} + x_{d2} + ... + x_{dm(d)} = h_d, d = 1,2,...,D$
- $\sum_{d} \sum_{p} \delta_{edp} x_{dp} + Y \le C_{e}$, e = 1, 2, ..., E
- variables are continuous and non-negative

This is the first step of the MMF problem given below. Many people considered that first step and did not know how to continue!

correct MMF formulation:

- lexmax [Y₁, Y₂, ..., Y_E]
 - $x_{d1} + x_{d2} + ... + x_{dm(d)} = h_d$, d = 1, 2, ..., D
 - $\sum_{d} \sum_{p} \delta_{edp} X_{dp} + Y_{e} \le C_{e}$, e = 1, 2, ..., E

variables are continuous and non-negative

Conclusions

MMF is useful in network design

- routing problems (for elastic traffic)
- unsed capacity maximization
- protection problem
- many others
- Convex MMF problems can be effectively solved through a sequential procedure involving a master problem and lifting tests
- There is a way to effectively incorporate MMF into non-convex problems, without increasing their complexity (only continuous variables and linear constraints added)
 - e.g., bandwidth allocation problem involving single paths

more in:

- D. Nace, M. Pioro: Max-min fairness and its applications to routing and load-balancing in communication networks – a tutorial, *IEEE Communications Surveys and Tutorials*, vol.10, no.4, pp.5-17, 2008
- W. Ogryczak, M. Pioro, A. Tomaszewski: Telecommunications network design and max-min optimization problem, *Journal of Telecommunications and Information Technology*, No.3, 2005
- M. Pioro, D. Medhi: *Routing, flow, and capacity design in communication and computer networks (chapters 8 and 13)*, Morgan-Kaufmann (Elsevier), 2004

Thank you!

protection of a network

Given:

- link capacities C₁, C₂,..., C_E
- realized demand volumes: h₁, h₂,..., h_D

Problem

- for each link divide its capacity C_e into working capacity W_e and protection capacity Y_e so that in the case of failure of any single link g
 - its working capacity W_g can be restored using protection capacities Y_e (e \neq g)
 - demand volumes th_1 , th_2 ,..., th_D can be realized in working capacities W_e (e = 1,2,...,E)
- t is maximized

- the above problem is the first step in the MMF problem
 - lexmax [t₁, t₂, ... , t_D]
 - demand volumes t₁h₁, t₂h₂,..., t_Dh_D are realized in working capacities W_e (e = 1,2,...,E)
 - working capacity W_g of any link g can be restored using protection capacities Y_e (e ≠ g)

routing problem for a simple network

- two links in series each of capacity 10 (e.g., 10 Mbps)
- three elastic demands (flows) eager to get as much bandwidth as possible

routing problem for a simple network (modified)

PF routing – solution

 $C_1 = 15$ $C_2 = 10$ (bottleneck links) the rest of links have large capacity the amount of goods (bandwdth) is infinite

- $\bullet X_1 + X_2 \le 15$
- $\bullet X_1 + X_3 \le 10$
- maximize log X_1 + log X_2 + log X_3

solution (standard convex optimization problem): • $X_1 \approx 4 \ X_2 \approx 11 \ X_3 \approx 6$

Ρ

general PF problem

- maximize log $f_1(x)$ + log $f_2(x)$ + ... + log $f_m(x)$
- over $x \in X$

The problem is convex when X is convex and each log $f_j(x)$ is concave (e.g., when $f_i(x)$ are linear or concave).

utility function

• $U(X) = r X^{(1-\alpha)} / (1 - \alpha)$

• throughput maximization: $\alpha = 0$, U(X) = r X

 \frown

U(x) - utility function

- MMF: $\alpha \rightarrow \infty$
- PF: $\alpha \rightarrow 1$, U(X) = r log X