On the notion of max-min fairness and its applications to routing optimization

Michał/<mark>Pióro</mark>

Institute of Telecommunications Warsaw University of Technology (Poland)

Department of Electrical and Information Technology Lund University (Sweden)

HET-NETs 2010, Zakopane, Poland

motivation

fairness is an important objective in communication network design

yet not commonly understood

example applications

- **Fouting of elastic traffic in the Internet**
- **resource utilization or resource distribution**
- design of resilient networks

there are different notions of fairness

- MMF max-min fairness
- PF proportional fairness

 \mathbb{Z} optimization methods for problems involving fairness are hardly known to researchers in telecommunications **_ MMF** is frequently "re-invented" (often in a wrong way)

purpose of the presentation (and outline)

- \blacksquare introduce the notion of MMF
- \blacksquare show applications of MMF to routing optimization
- \blacksquare present basic optimizatio η algorithms for MMF
- **= show example results**
- **discuss selected extensions**

lexicographically maximal solution(priority of customers)

give as much goods as possible to the most important customer (until he cannot accept more, or the goods are exhausted)

2

 \blacksquare do the same for the second most important client, and so on

37.5 cl

50.0 cl

1

4

 \blacksquare example: distribute 1 liter of beer

12.5 cl

3

max-min fairness: beer distribution

- give as much goods as possible equally to all, until
	- **n** one customer cannot accept more or
	- **Filte** goods are exhausted the goods are $\frac{1}{2}$
- \blacksquare if there are more goods left, distribute them equally to those who are still able to receive them

l 1 37.5 cl 37.5 cl 37.5 cl 37.5 cl 37.5 cl 37.5 cl \sim

- **____and so on, until either no one can accept more, or the goods are** exhausted
- **Example of a MMF solution:** distribute 1 liter of beer

25 cl

routing problem for a simple network

- \blacksquare two links in series each of capacity 10 (e.g., 10 Mbps)
- three elastic demands (flows) eager to get as much bandwidth as possible

routing problem for a simple network (modified)

routing problem

п ^C^e – capacity of link e, e [∈] ^E

 \blacksquare \blacksquare three connections (d = 1,2,3) corresponding to three fixed paths from s to t_1 , t_2 , t_3

 \blacksquare assign bandwidth X_1 , X_2 , X_3 respectively \blacksquare to paths ${\sf P}_1$, ${\sf P}_2$, ${\sf P}_3$ in a fair way

elastic traffic: the amount of goods accepted by a connection is potentially infinite

s

 $P₂$

 C_1

P1

 $\mathbf{t}_{\mathbf{1}}$

 \mathbf{t}_1 \mathbf{t}_2 \mathbf{t}_3

 $\begin{array}{ccc} \uparrow & & \nearrow & P_3 \end{array}$

 \textsf{C}_2

lexmax routing – solution

 C_1 = 15 C_2 = 10 (bottleneck links) the rest of links have large capacitythe amount of goods (bandwdth) is infinite

- \blacksquare X₁ + X₂ ≤ 15
- \blacksquare X₁ + X₃ ≤ 10
- \blacksquare importance of connections: $\lvert \mathbf{3}, \backslash \mathbf{2}, \ \mathbf{1} \rvert$

solution:

 \blacksquare step 1: $X_3 =$ (link 2 gets saturated) \blacksquare step 2: $X_2 =$ (link 1 gets saturated) \blacksquare step 3: $X_1 =$ **(link 1 and link 2 are saturated) finally:** $X_1 = 0$ $X_2 = 15$ $X_3 = 10$

s

 ${\sf P}_2$

 C_1

P1

t,

 t_1 t_2 t_3

 $\left\langle \left\langle \right\rangle \right\rangle =\left\langle \left\langle \right\rangle \right\rangle \left\langle \right\rangle \left\$

 C_2

MMF routing - solution

 C_1 = 10 C_2 = 15 (bottleneck links) the rest of links have large capacitythe amount of goods (bandwdth) is infinite

 \blacksquare X₁ + X₂ ≤ 15 \blacksquare X₁ + X₃ ≤ 10

solution: \blacksquare step 1: \blacksquare X_1 $X_1 = X_2 = X_3 = 5$ (link 2 gets saturated) \blacksquare step 2: $X_2 =$ (link 1 gets saturated) **finally:** $X_1 = 5$ $X_2 = 10$ $X_3 = 5$

 \emph{C}_{2}

s

 P_{2}

 C_{1}

 P_1

 $\mathbf{t}_{\mathbf{1}}$

 t_1 t_2 t_3

 \leftarrow P₃

algorithm (waterfilling)

(Bertsekas & Gallager "Data Networks")

 $n_{\rm e} =$ | {d \in D: e \in P $_{\rm d}$ } | , e \in E \qquad (number of paths through a link)

Step 1:

Step 0: $X = (X_1, X_2, ..., X_D) := 0$; $k := 0$. $k := k+1$ set t = minn_{e∈E}Ce/ne for all $e \in E$ put $C_e \stackrel{*}{\mathcal{E}} = C_e$ - t \cdot n_e for all d \in D put X_d := X_d + t remove all saturated links and all connections through the removed links.: Stop if there are no connections left; Step 2:otherwise go to Step 1.

Not so simple in the general case!

basic notations: lexicographical order

$$
\blacksquare \quad \mathsf{y} = (\mathsf{y}_{1}, \mathsf{y}_{2}, \ldots, \mathsf{y}_{m}), \ z = (z_{1}, z_{2}, \ldots, z_{m}) \text{ vectors in } \mathsf{R}^{m} \text{ (m-vectors)}
$$

 \blacksquare lexicographical order:

$$
(y_1, y_2, ..., y_m) <_{lex} (z_1, z_2, ..., z_m)
$$

iff there exists $0 \leq \, k <$ m/such that

■
$$
y_j = z_j
$$
 for j=1,2,...,k
= $y_{k+1} < z_{k+1}$

the rest of entries $(j=k+2,k+3,...,m)$ do not matter!

examples: $(1, 2, 1000) _{lex} (1,3,1)$ $(1, 100, 1000) _{lex} (2,2,2)$

basic notations: MMF order

$$
\bullet \ \ \ y = (y_1, y_2, ..., y_m), \ z = (z_1, z_2, ..., z_m)
$$

 \blacksquare MMF order:

iff

$$
(y_1, y_2, ..., y_m) <_{MMF} (z_1, z_2, ..., z_m)
$$

 $\left[\begin{array}{c} (y_1, y_2, ..., y_m) \end{array} \right] < \left[\begin{array}{c} (z_1, z_2, ..., z_m) \end{array} \right]$

where [x] denotes vector x sorted in non-decreasing order

examples: $(1,2,2) <_{lex} (1,3,1)$

 $(1,3,1) <$ _{MMF} $(1,2,2)$ $(1,2,3) <$ _{MMF} $(1,3,3)$

 $(1,2,3)$ < \leq $\lfloor (1,3,3) \rfloor$

(because $(1,1,3) <$ _{lex} $(1,2,2)$) (already sorted)

three problems

 $\mathbf{X} \subseteq \mathsf{R}^{\mathsf{n}}$ solution space \blacksquare x = (x₁,x₂,...,x_n) n-vector, x \in $=$ $f(x) = (f_1(x), f_2(x),..., f_m(x))$, $f_j: X \rightarrow$

(variables) (criteria)

Find $x^0 \in X$ such that:

LEXMAX: $f(x^0)$ is lexicografically maximal over $x \in X$

MMF: $f(x^0)$ is maximal in the MMF sense over $x \in X$

general lexmax problem

Find x^0 lexicographically maximal in X with respect to the criterion function f.

algorithm for lexmax – steps

Step 0: $k:=1$.

Step 1:

 $Solve$ the following optimization problem P_k
Cuith + 0 + 0 = + 0 fixed (with $\mathsf{t_1}^0$, $\mathsf{t_2}^0$,..., $\mathsf{t_{k\text{-}1}}^0$ fixed)

max $\{ \mathsf{ f}_\mathsf{k}(\mathsf{ x}),\, \mathsf{ x} \in \mathsf{ X}$, $\mathsf{ t}_\mathsf{j} \! \left.\right) \!\!\!\!\! \left.\left.\right. \!\!\!\right. = \mathsf{ f}_\mathsf{j}(\mathsf{ x}),\, \mathsf{j} \! = \! \mathsf{ 1}, \! \mathsf{ 2}, \! \mathsf{ . \! \! \! \cdot \!}, \! \mathsf{ k} \! \! \text{-} \! \mathsf{ 1} \! \}.$

Denote the resulting optimal solution by x^0 and put $t_k^0 = f(x^0)$.

Step 2:If k = m then stop (x⁰ is the optimal solution);
Otherwise put k:= k+1 and go to Step 1. $\mathsf{\mathbf{e}}$ put k; $=$ k+1 and go to Step 1.

Remark: If X is convex and $\mathsf{f}_{\mathsf{j}}(\mathsf{x})$ are concave then each P_{k} is a convex problem.

general MMF problem

$$
\blacksquare \quad \text{Find} \quad x^0 \in X
$$

■ such that \forall x \in X , [f(x)] $\leq \frac{1}{\log |f(x^{0})|}$.

(find x^0 lexicographically maximal in X with respect to the <u>sorted</u> criterion function f)

- п The problem is called convex when X is convex and all f_j are concave.
- ┙ Convex MMF problems can be treated sequentially in a way that is not much more complex than for lexmax.
- \blacksquare For non-convex problems the procedure is more complex. L.

MMF algorithm for convex problems – notation

algorithm – steps

Step 0: B := ∅ and t^B := ∅.
Step 1: If B = M .then STOD Step 1: If B = M, then STOP (x⁰ and [t^B] = [f(x⁰)] are optimal). Else, solve problem $P(\mathsf{B},\mathsf{t}^{\mathtt{B}})$ and denote the resulting solution by (xº,tº). (note that $P(\varnothing,\varnothing)$ yields the first value in the final solution [f (xº)]) Step 2: For each index k ∈ B' such that f $f_k(x^0) = t^0$ solve the lifting test $\overline{f}(R,t^0,k)$: maximize $f_k(x)$ subject to**n** $f_j(x) \ge t^0$ $j \in B' \setminus \{k\}$ **t**_j (X) = t_j^B j ∈ B $f_i(x) = t_i^B$ ^x[∈] X. If $f_k(x^0) = t^0$ for optimal x^0 solving $\mathcal{T}(B, t^B, t^0, k)$ then B := B \cup {k}, t $_{\sf k}$ B := t $^{\sf o}$.

Step 3: Go to Step 1.

 \blacksquare example with 3 criteria to be lifted in a MMF way

remarks

- **The algorithm works due to convexity: if each criterion can be** lifted individually then they all can be lifted simultaneously!
- \blacksquare this property is not present in non-convex problems and this β makes them difficult
- \blacksquare excessive number of tests $\mathcal{T}(\mathsf{B},\mathsf{t}^{\mathtt{B}},\mathsf{t}^{\mathtt{0}},\mathsf{k})$ to be solved
- **= several ways to effectively overcome this difficulty**
	- **<u>use of dual variables</u>**
	- \blacksquare making one modified test in each step

formulation of the convex routing problem

Given

- \blacksquare link capacities (C_{e})
- **Example:** Interact allowable paths for realizing demands (P_{d1} , P_{d2} , ..., $P_{dm(d)}$)

Find

 \blacksquare flows assigned to the demand paths ($\boldsymbol{\mathsf{x}}_\mathsf{dp}$) (now paths are subject to optimi<mark>zat</mark>ion)

Such that

- \blacksquare loads of the links do not exceed their capacity
- \blacksquare flows are assigned to demands in a MMF way: \blacksquare

to maximize lexicographically the sortedtotal allocation vector X = $(X_{1},X_{2},...,X_{D})$

v=1

v=2

v=4

v=5

 $\mathbf{P_{d1}}$

v=7

v=3

 $\mathsf{P}_{\mathsf{d}2}$

v=6

MMF convex routing problem

- \blacksquare **lexmax** $[X_1, X_2, ..., X_D]$
	- $\bm{x}_d = \bm{x}_{d1} + \bm{x}_{d2} + ... + \bm{x}_{dm(d)}$, $\bm{d} = \bm{1}, \bm{2}, ... , \bm{D}$
	- $\Box \quad \Sigma_{\rm d} \Sigma_{\rm p} \ \delta_{\rm edp} \chi_{\rm dp} \leq C_{\rm e}$, $\quad {\rm e}=1,2,...,E$
	- \blacksquare variables are continuous and non-negative

Waterfilling algorithms does not work so we use the general MMF algorithm for convex MMF problems.

$$
\delta_{\text{edp}} = 1 \text{ if } e \in P_{\text{dp}}
$$

v=1

v=2

v=4

v=5

 $\overline{\mathbf{P}_{\mathbf{a}}}$

v=7

v=3

 $\mathsf{P}_{\mathsf{d}2}$

v=6

numerical results: 8 steps of the algorithm

informal formulation of the routing problem with single-paths (non-convex, NP - complete)

 \blacksquare **= select exactly one path j(d) for each demand d**

- \blacksquare \blacksquare allocate entire flow X_{d} to path $\mathsf{P}_{\mathsf{d} \mathsf{j}(\mathsf{d})}$ (out of $\mathsf{P}_{\mathsf{d} 1}$, $\mathsf{P}_{\mathsf{d} 2}$,…, $\mathsf{P}_{\mathsf{d} \mathsf{m}(\mathsf{d})}$)
- \blacksquare so that the capacity C_{e} of no link e is exceeded
- $\; \blacksquare \;$ and the vector [$({\sf X}_1,$ ${\sf X}_2,$ \ldots , ${\sf X}_{\sf D})$] is lexicographically maximal

Remarks

- **as we already know when paths j(d) are given and fixed, the** \blacksquare problem is easy (waterfilling)
- \blacksquare \blacksquare the difficulty of the problem lies in the path selection

non-convex formulation of the problem (MIP)

Constants

- \blacksquare **link capacities (** C_{e} **)**
- [∆] (large enough constant)
- \blacksquare lists of allowable paths for realizing demands (P_{d1} , P_{d2} ,…, $\mathsf{P}_{\mathsf{dm(d)}}$)

Variables

- \blacksquare flows assigned to the demands paths (x_{dp})
- \blacksquare binary variables associated with flows ($\sf u_{dp}$) $\bar{}$

Such that

- \blacksquare x_{dp} ≤ ∆u_{dp} d=1,2,..,p, p=1,2,...,m(d)
-
- $\begin{aligned} \textbf{u} \quad & \textstyle \sum_\text{p} \textbf{u}_\text{dp} = 1 \quad \textbf{d} = 1, 2, ..., D \\ \textbf{u} \quad & \textstyle \sum_\text{q} \sum_\text{p} \delta_\text{edp} \textbf{x}_\text{dp} \leq C_\text{e} \quad \textbf{e} = 1, 2, ..., E \end{aligned}$
- \blacksquare total flows (X $_{\sf d}$ =x $_{\sf d1}$ +x $_{\sf d2}$ +...+x $_{\sf dmd}$)) are assigned to demands in the MMF way:

to maximize lexicographically the <u>sorted</u> total allocation vector $X = (X^1, X^2, ..., X^D)$

example

Previous algorithms fail for non-convex X.

Example: two demands between two nodes with two paths
of capacity 1 and 2, respectively.

When we solve for the first MMF element we get $(X_1,X_2) = (1,1)$. The blocking tests will indicate that both criteria can be improved. They cannot, however, be improvedsimultaneously.

optimal solution: C_1 =1 C_2 =2 $(\mathsf{X}_1,\mathsf{X}_2)=(1,2)$ or $(\mathsf{X}_1,\mathsf{X}_2)=(2,1)$

(in the bifurcated case: (1.5,1.5))

transformation of the general problem to linear objective

28 ^X[⊆]Ren a set in n-dimensional Euclidian space \blacksquare x = (x₁,x₂,...,x_n) n-vector $f(x) = (f_1(x), f_2(x), \ldots, f_m(x))$ f_j : X \rightarrow R scalar functions $\lbrack \mathsf{exmax} \rbrack \lbrack \mathsf{f(x)} \rbrack \rbrack$ for $\mathsf{x} \in \mathsf{X}$ $y = (y_1, y_2, ..., y_m)$ m-vector **□** Z <u>⊂</u> R^{m+n} :(y,x) ∈ Z iff $x \in X$
 $x \in E$ \blacksquare y $_{\rm j} \leq$ f $_{\rm j}$ (x), $\rm j$ =1,2,...,m lexmax $[y]$ for $(y, x) \in Z$ optimal x^0 are the same in both problems and $y^0 = f(x^0)$

cumulated criteria

cumulated criteria - derivation of the solution

cumulated criteria - derivation of the solution

LP for fixed y, but non-linear for variable y.

But taking the dual gives an LP (for a fixed k):

 $R_k =$ $_{k}$ = **max** kr_k - \sum_{j} d_{kj} subject to $\mathsf{d}_{\mathsf{k}\mathsf{j}} \geq \begin{array}{c|c|c} \mathsf{r}_{\mathsf{k}}^{}\mathsf{-} \mathsf{y}_{\mathsf{j}}^{} & \mathsf{j}^{} \equiv \mathsf{1,2,...,m} \ \mathsf{d} & > & \mathsf{0} \end{array}$ $\mathsf{d}_{\mathsf{k}\mathsf{j}} \geq \begin{array}{c|c} \mathsf{0} & \mathsf{j} = \mathsf{1,2,...,m} \end{array}$ continuous variables: d_{kj} o j=1,2,...,k

cumulated criteria - solution

Can be solved sequentially, for each $k=1,2,...,m$.

Sequential algorithm – steps Step 0: $k:= 1$. Step 1:: Solve the program P_k : max kr_k - Σ_i d_{ki} subject to (y,x) [∈] ^Z $R_i^0 \leq \mathbf{ir_i} - \sum_i \mathbf{d_{ii}}$ $i = 1,2,...,k-1$ $\mathsf{d}_{\mathsf{i}\mathsf{j}}$ \geq \geq r_i - y_j / | \ j=1,2,...,m, i=1,2,..,/k $\mathsf{d}_{\mathsf{i}\mathsf{j}}$ \geq ≥ 0 , and $j=1,2,...,m$, i=1,2,...,k and denote its optimal solution by $({\mathsf{x}}^{\mathsf{0}},{\mathsf{y}}^{\mathsf{0}},{\mathsf{R}}_{\mathsf{k}}{}^{\mathsf{0}}).$ Step 2:: The stop (x^0, y^0) is the optimal solution).
Otherwise put k:= k+1 and go to Step 1. put k:= k+1 and go to Step 1.

Computation times [sec] for single path allocation

Cumulated criteria Direct approach based on explicit formulations (for each step of the sequential process)

Nilsson, P.: Fairness in communication and computer network design, PhD thesis, Lund University, 2006.

Remarks

 Cumulated approach is a general approach to resolving non-convex MMF problems

Example ted approach adds no difficulty to the resolution scheme with respect to one-criterion versions of the original problem

Example ted approach performs better than the direct approach

 this suggests effectiveness of the cumulated approach in the general case

Other important problems involving MMF

- \blacksquare Maximization of unused capacity
- \blacksquare **_ Introducing resilience to failures in non-protec<mark>ted</mark> networks**
- \blacksquare Dimensioning of resilient networks

maximization of unused capacity

max Y

- **x**_{d1} + x_{d2} + ... + $x_{dm(d)}$ = h_d, d = 1,2,...,D
- Σ _d Σ _p δ _{edp}x_{dp} + Y ≤ C_e, e = 1,2,...,E
- variables are continuous and non-negative

This is the first step of the MMF problem given below. Many people considered that first step and did not know how to continue!

correct MMF formulation:

- \blacksquare lexmax [Y_1 , Y_2 , ... , Y_E]
	- $x_{d1} + x_{d2} + ... + x_{dm(d)} = h_d$, $d = 1,2,...,D$
	- $\Box \quad \Sigma_{\mathsf{d}} \ \Sigma_{\mathsf{p}} \ \delta_{\mathsf{edp}} \mathsf{x}_{\mathsf{dp}} + \mathsf{Y}_{\mathsf{e}} \curlyeqprec \mathsf{C}_{\mathsf{e}} \ , \ \ \mathsf{e} = \mathsf{1}, \mathsf{2}, \ldots, \mathsf{E}$

variables are continuous and non-negative

Conclusions

MMF is useful in network design

- \blacksquare routing problems (for elastic traffic)
- unsed capacity maximization
- protection problem
- many others
- **Extending to September 2018 of the Universet of the Universet Article 2019** of the continuity o sequential procedure involving a master problem and lifting tests
- **There is a way to effectively incorporate MMF into non-convex** problems, without increasing their complexity (only continuous variables and linear constraints added)
	- e.g., bandwidth allocation problem involving single paths

more in:

- \mathbf{H} D. Nace, M. Pioro: Max-min fairness and its applications to routing and load-balancing in communication networks – a tutorial, *IEEE* load-balancing in communication networks – a tutorial, *IEEE*
Communications Surveys and Tutorials, vol.10, no.4, pp.5-17, 2008
- \blacksquare W. Ogryczak, M. Pioro, A. Tomaszewski: Telecommunications network
design and max-min optimization problem, Journal of
Telecommunications and Information Technology, No.3, 2005
- \mathbf{H} M. Pioro, D. Medhi: Routing, flow, and capacity design in communicationand computer networks (chapters 8 and 13), Morgan-Kaufmann (Elsevier), 2004

T<mark>hank</mark> you!

protection of a network

Given:

- **link capacities** C_1 **,** C_2 **,...,** C_E a.
- **realized demand volumes:** h_1 **,** $h_2,...$ **,** h_D m.

Problem

- **For each link divide its capacity** C_e **into working**
Example: We and protection canocity \mathcal{Y} as that i capacity W_{e} and protection capacity Y_{e} so that in the Z_{e} case of failure of any single link g
	- **its working capacity W**_g can be restored using
protection capacities Y_e (e \neq g) \mathbf{H}^{c} $\frac{1}{e}$ (e \neq g)
	- \mathbf{H}^{c} **demand volumes th₁, th₂,..., th_D can be realized** in working canacities W_{α} (e = 1.2) EX in working capacities W_e (e = 1,2,...,E) $\,$
- \mathbf{m} t is maximized

- \blacksquare the above problem is the first step in the MMF problem
	- \Box **lexmax** [t_1 , t_2 , ... , $t_{\rm D}$]
	- \blacksquare **demand volumes** t_1h_1 **,** t_2h_2 **,...,** t_bh_b **are realized in working connection ML (e.g. 1.2)** capacities W $_{\rm e}$ (e = 1,2,...,E)
	- \Box working capacity W_g of any link g can be restored using protection capacities Y_e (e \neq g) $_{\rm e}$ (e \neq g)

routing problem for a simple network

- \blacksquare two links in series each of capacity 10 (e.g., 10 Mbps)
- three elastic demands (flows) eager to get as much bandwidth as possible

routing problem for a simple network (modified)

PF routing – solution

 C_1 = 15 C_2 = 10 (bottleneck links) the rest of links have large capacitythe amount of goods (bandwdth) is infinite

- \blacksquare X₁ + X₂ ≤ 15
- \blacksquare X₁ + X₃ ≤ 10
- \blacksquare maximize log X $_1$ + log X $_2$ \neq log X $_3$

solution (standard convex optimization problem): \blacksquare X $_1$ ≈ 4 X $_2$ ≈ 11 X $_3$ ≈ 6

 C_2

s

 ${\sf P}_2$

 C_1

P1

t,

 t_1 t_2 t_3

 $\left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle =\left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \right\rangle =\left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle \right\rangle$

general PF problem

- п maximize $log f_1(x) + log f_2(x) + ... + log f_m(x)$
- m. over ^x[∈] ^X

The problem is convex when X is convex and each log $f_j(x)$ is concave (e.g., when $f_i(x)$ are linear or concave).

utility function

 \blacksquare U(X) = r X^(1-α) / (1 - α)

 \bullet throughput maximization: $\alpha = 0$, U(X) = r X

⌒

- MMF: ^α [→]
- \blacksquare ΡΓ: α $\rightarrow \infty$
 \blacksquare ΡF: α \rightarrow 1, U(X) = r log X

